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Collective actuation in active solids, the spontaneous condensation of the dynamics on a few elastic modes,
takes place whenever the deformations of the structure reorient the forces exerted by the active units composing,
or embedded in, the solid. In a companion paper, we show through a combination of model experiments,
numerical simulations, and theoretical analysis that adding an external field that polarizes the active forces
strongly affects the dynamical transition to collective actuation. A new oscillatory regime emerges, and a
reentrance transition to collective actuation takes place. Depending on the degeneracy of the modes on which the
dynamics condensates, and on the orientation of the field with respect to the stiff direction of the solid, several
new dynamical regimes can be observed. The purpose of the present paper is to review these dynamical regimes
in a comprehensive way, both for the single-particle dynamics and for the coarse-grained one. Whenever possible
the dynamical regimes and the transition between them are described analytically, otherwise numerically.
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I. INTRODUCTION

Active solids—dense assemblies or elastic structures com-
posed of, or doped with, active units—encompass a wide
class of systems ranging from biological to man-made ma-
terials [1-16], and exhibit exceptional mechanical properties
[17-19]. Collective actuation describes self-sustained oscilla-
tions of such active solids, with a spontaneous condensation
of the dynamics on a few vibrational modes of the elastic
structure. This denomination was proposed in [20], where
the authors describe and analyze the phenomenon in a model
experimental system. The latter is composed of elementary
polar particles, located at the nodes of an elastic lattice. The
orientation of these particles aligns with their motion, ac-
cording to the so-called self-alignment mechanism, a now
well-documented effect, introduced first in [21], and rein-
troduced independently in different contexts (see [22] for a
recent review). As a result, the displacements induced by the
active forces reorients these forces, leading to a nonlinear
elasto-active feedback. When this feedback is strong enough,
spontaneous oscillations take place, the dynamics condensates
on essentially two modes of the elastic structure and collective
actuation occurs. The phenomenon is however not limited to
that model experimental system. It was clearly evidenced in
large bacterial colonies [23], and is likely to be present in other
contexts, such as confined epithelial tissues [24] and dense
pedestrian crowds [25]. More generally, confined assemblies
of soft self-aligning polar particles are prone to exhibit collec-
tive actuation, as shown numerically in [26].

The simplicity of the experimental system proposed in [20]
allows for a description of the dynamics in terms of a set of
overdamped Langevin equations, where the elasticity is de-
scribed in the harmonic approximation, and the only nontrivial
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term, resulting from self-alignment, couples the orientational
and translational degrees of freedom. Taking advantage of this
formulation, the authors could derive important results regard-
ing the linear stability of the disordered phase, the selection of
the modes by the dynamics, and, for some specific geometries,
obtain a complete description of the transition, which we shall
review below. This basic understanding of the mechanism
of the transition further allowed to propose a way to switch
between different regimes of collective actuation, controlling
the mechanical tension inside the spring network [27]. Also,
whenever the solid hosts zero-energy deformation modes,
stress propagation induces the spontaneous actuation of these
modes, without exciting the finite energy vibrational ones. In
that case, the dynamics maps onto a relaxational dynamics
in an effective Landau free energy, predicting mode selection
and the onset of collective dynamics [28], as observed for
instance in elastically connected swarms of robots [29].

Finally, the key role played by the coupling between the
orientation of the active forces and the displacements, sug-
gests the use of an external field to polarize these orientations
and thereby manipulate the collective actuation dynamics,
as simply as magnetic fields are used to manipulate spins.
The ability of living systems to respond to various types of
environmental cues is another motivation for analyzing the
response of model systems to external fields [30-33]. This
new avenue for controlling active solids is explored experi-
mentally, numerically, and theoretically in a companion paper
[34]. The variety of configurations that can be explored and
the richness of the observed dynamics, however, call for a
more systematic description. This is the primary goal of the
present work.

In this paper, we will systematically analyze numeri-
cally and theoretically the dynamical regimes observed when
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varying the field amplitude and the strength of the elasto-
active coupling. Depending on the network’s structure and
boundary conditions, which govern the normal mode spec-
trum of the passive structure, the two primary vibrational
modes on which the dynamics condensates can be degenerate,
or not [34]. Already in the absence of field, the latter case
opens the way to a variety of periodic oscillations, as dis-
cussed in [35] for the single-particle dynamics. When adding
a polarizing field, we shall see that the orientation of the field
with respect to the softest of these two modes also matters.
The present analysis focuses on both the dynamics of a single
self-aligning particle and that of the fields obtained from the
coarse-graining of the N-particles microscopic model [20].
The paper is organized as follows. After an introduction of
the microscopic model (Sec. II), the paper is divided into
two sections, one dedicated to the single particle dynamics
(Sec. III) and one to the coarse-grained one (Sec. IV). Each
section is divided according to the degeneracy or not of the
modes of interest.

II. MICROSCOPIC DYNAMICS

The active solids we consider are composed of a two-
dimensional elastic lattice, with N nodes, at the location of
which sits a polar active force of orientation #1;, i € {1, ... N},
and amplitude Fy. Taken individually, this force extends or
compresses a spring of stiffness k by a length I, = Fy/k.
The forces are exerted by self-aligning polar active particles,
which reorient towards their velocity over a characteristic
length [, [22]. The central control parameter of the dynamics
is therefore the so-called elasto-active coupling IT = [./[,. In
the overdamped limit and harmonic approximation, the dis-
placement u; of the node i with respect to the passive reference
configuration and the orientation n; follow,

it,- = Hﬁi

n; = (; X [; + h]) x A; + v 2Dn;, (1b)

— Mjju;, (1a)

where M is the dynamical matrix of the elastic lattice, D sets
the noise amplitude and 7; are independent Gaussian white
noises. Note that (M;;)g, (resp. (M), ) encodes the strength
of the elastic bond between nodes i and j (resp. the pinning
constraints on node i), where 8, y = é,, &, indicate the axis
[36,37]. Moreover, the above equations are made dimension-
less, using y /k and /, as units of time and length, respectively,
where y is an effective friction coefficient. In the following,
we shall only consider mechanically stable networks, thus all
eigenvalues ;] of the dynamical matrix M are positive. Note
that we denote them as w,% to reflect the fact that, in the case
of passive underdamped dynamics, they correspond to the
squared oscillation frequencies of the vibrational modes. In
the present overdamped dynamics, they represent inverse re-
laxation times. In all cases, they are dimensionless quantities.
Finally, & is the external polarizing field, which can be added
to act on the orientation of the active forces, as a magnetic
field would do with XY spins.

The above model was studied in the zero-field case in [20].
The deterministic dynamics has an N-dimensional set of fixed
points, where the active forces equilibrate with the elastic
forces induced by the deformation: any set of orientations

defines one fixed point ({#1;}, {u; = HM;jlﬁj}). The linear
destabilization threshold IT.({#;}) depends on the fixed point
configuration. These thresholds are bounded IMM" = w?. <
II.({a;}) < I, where a)rznin is the smallest eigenvalue of
the dynamical matrix M. For IT < 2, , all fixed points are
marginally stable (N zero eigenvalues) because of their ro-
tational degeneracy. IT'™* is not known analytically, but it is

bounded from above by

a)2 =+ a)z.
M = min | ——~2 |, 2)
i\ clle;), le;)

where the function c(-, -) only depends on the eigenvectors
of M, {|g;)}. It is bounded between 0 and 1 and is maximal
when the modes |@;) and |@ ;) are extended and locally orthog-
onal. The collective actuation dynamics, where all the nodes
oscillate in synchrony around their reference configuration
takes place for IT > IMca > wfmn. Except for certain specific
geometries, I[1ca could not be obtained analytically. Numer-
ically, it is observed that ITca < I, leaving the place for
a regime of coexistence between marginal fixed points and
oscillating dynamics.

In the following, we shall concentrate on the effect of
the external polarizing field on the transition to collective
actuation. To do so we will make use of two simpler models
derived from the one presented above. The first one is simply
the one-particle version of it. The second one describes the
coarse-grained dynamics of the displacement and polarization
fields, obtained from a local averaging procedure of Eq. (1),
which we shall recall at the beginning of Sec. IV.

II1. SINGLE PARTICLE DYNAMICS
The single particle dynamics can be recast in
it, = [cos 6 — wluy, (3a)
ity = Tsin6 — w;u,, (3b)

6 = —sin6 (i, + hy) + cos @ (it + hy) + /2D, (3c)

where 6 denotes the orientation of #z = (cos @, sin ). There

are two cases of interest, the degenerate one, a)i = a)f =

w?, and the nondegenerate one, for which we arbitrarily set
LA

wy <y

A. The degenerate case: 0} = @} = w;

As we shall see below, the rotational symmetry of the
degenerate case in the absence of external field allows for a
rather complete understanding of the phase diagram, that goes
beyond the linear stability of the fixed points and captures the
domain of existence of the nonlinear oscillating solutions too.

In the degenerate case, we define u = (Rcos ¢, Rsin ¢)
and y = 6 — ¢. With these notations, the deterministic ver-
sion of Eq. (3) reads

R=Tlcosy — wéR, (4a)
. I .

¢ = i siny, (4b)
. 2 Im\ . .

y = (a)OR — E) siny — hsin(y + @). (4c)
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FIG. 1. Single particle dynamics in a degenerate harmonic po-
tential, in the absence of external field: (a) The drift-pitchfork
bifurcation; the white cone describes the set of marginal fixed points
for increasing I1. For IT = w}? all fixed points turn unstable and leave
place to an orbiting solution, the oscillation frequency of which,
increases from zero at the transition. (b) Destabilization mechanism;
when I1 < wé, the displacement vector (black) catches up the ori-
entation one (red) and the system restabilizes on a new fixed point;
when IT > a)g, the displacement vector chases the orientation one
indefinitely, leading to the oscillating solution.

1. In the absence of an external field h = 0

When 4 =0 in Eq. (4), the system has an infinite set of
fixed points (R = I[1/w}, ¢ € [0,27], y = 0). The Jacobian
of the linearized dynamics around any of the fixed point reads

—a)% 0 0
0 0 0} . (&)
0 0 M-—af

The dynamics along R, corresponding to the negative eigen-
value —wg, always relaxes to the stationary value Ry. There is
one zero eigenvalue associated with the rotational symmetry,
and the last eigenvalue A = IT — ] turns positive when IT >
I, = w}. All fixed points thus lose their stability for the same
value of IT: they are marginally stable for IT < I, and lin-
early unstable for IT > I1.. At the transition, the eigenvalues
and the corresponding eigenvectors of the Jacobian coalesce,
indicating that (IT = I1., & = 0) is an exceptional point [38].

Beyond the instability threshold (IT > I1.), there are peri-
odic solutions with R = (l'I/a)(z))l/2 and Q = ¢ = Fwy(IT —
w?)'/? [39]. These Chiral Oscillations (CO) emerge continu-
ously from the circular set of marginal fixed points at IT = I,
via a drift-pitchfork bifurcation (Fig. 1(a) and [40]). The phys-
ical mechanism behind this transition is that, when a small
perturbation misaligns the displacement and the orientation
vectors and IT < I, the system restabilizes on a different
fixed point. On the contrary, when I1 > I1., the displacement
vector cannot catch up to the orientation one, and the periodic
dynamics sets in [Fig. 1(b)].
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FIG. 2. Single particle dynamics in a degenerate harmonic poten-
tial, in the presence of an external field: (a) Phase diagram; the color
codes for the value of 2, /€2,—the ratio of the oscillation frequency
of the displacement along the x and y directions—as indicated in the
legend (green: Q2,/2, = 1, light blue: Q,/Q, =2/3, red: Q,/Q, =
2); each point in the diagram is the result from an independent
simulation, with random initial condition. The solid and dashed
black lines indicate IT, = w? + h and I1* = w? + 3h, respectively.
(b)—(d)-left: dynamics of the displacements in the WW,, WW)z,, and
CO regimes; the trajectory is plotted during one period of oscillation,
and colored with time running from dark blue to red; the dark arrows
are snapshots of the orientation of the active force 7. (b)—(d)-right:
corresponding dynamics of the phases (6, ¢) with the same color
code.

2. Adding an external field h

Adding a field breaks the rotational symmetry, responsi-
ble for the degeneracy of the fixed points. Figure 2 displays
the phase diagram obtained by solving Eq. (3) numerically,
for wj =1, h = hé,, and D = 0.1. For I1 < w}, the system
is Frozen Polarized (FP), with the active force fluctuating
around the direction of the polarizing field. For IT > o3, three
regimes are observed depending on the field amplitude and
IT. At small fields, the CO regime subsists, with a tempo-
ral modulation of the angle y at the CO rotation frequency
[Fig. 2(d)]. For intermediate fields, a new dynamical regime
emerges, where the orientation of the active unit oscillates
around that of the field, which translates in real space into
a back-and-forth motion around the direction of the field,
analogous to that of Windscreen Wiper (WW,) [Fig. 2(b)].
Larger fields stabilize the FP state. For large enough I1, the
CO and the WW,, regimes are separated by a higher-order
Windscreen Wiper regime, which we denote WW% [Fig. 2(c)].
These dynamical regimes can be distinguished by the bounded
or unbounded nature of the phases 6 and ¢ as well as by
€2, /€2, the ratio of the oscillation frequency of the displace-
ment along the x and y directions. While for the CO regime the
phases are unbounded and 2,/€2, = 1, in the WW regimes
the phases are bounded and €2,/$2, = 2, respectively 2/3, for
the WW,, resp. the WW2, regime. The transitions between the
FP and the WW/| regimes, respectively the WW,, and the CO
regimes, take place close to I1, = a)(z) + h, and IT* = a)(z) + 3h
[Fig. 2(a)].
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In the presence of an external field, the deterministic
dynamics has only two fixed points, respectively polarized
along, and opposite to, the direction of the field: (R§ =
I/ a)(z), yoi =0, <p3[ = 0 or 7). The fixed point pointing in the
direction opposite to the field is always linearly unstable. The
one pointing in the direction of the field corresponds to the FP
state. The linear stability analysis indicates that the latter state
destabilizes for 1, = a)(z) + h, through a Hopf bifurcation with
an oscillating frequency o+/h at the transition. The nature of
the transition thus changes radically, as soon as an external
field reduces the degeneracy of the fixed points.

3. Expansion around the exceptional point

We have shown that the three regimes FP, CO, and WW
meet at the exceptional point (IT = I, 2 = 0). We now ex-
pand the dynamics around the exceptional point to get a
quantitative insight into the nature of these regimes and the
transitions between them.

We introduce the small parameter ¢ = (IT — a)(z)) /a)(z) and
the rescaled field H = h/(ew}), as suggested by the observed
scaling of the transition lines IT. and IT* (Secs. III 1 and
I112). Rescaling the variables as R(7) = 1 + ep( /et), p(t) =
@(Jet)and y (t) = /€7 ( /€t), we find that the radius is a fast
variable and that the dynamics of the angles reads, at order /€
(Appendix A),

7, (6a)
7 =—Hsing + /ey(1 — 7> — Hcos §). (6b)

ASID
Il

At order &°, the equations for ¢ and 7 describe a weigh-
ing pendulum for the angle @, suggesting a mapping of
the bounded phase solution of the pendulum onto the WW,
regime; and the unbounded phase solution of the pendulum
onto the CO regime. However, the energy of the pendulum,
E = 7?/2 — H cos &, defining the type of orbit, is conserved,
so that there is no mechanism to select the orbit at this order.

At order /e, the second term in the right-hand side of
Eq. (6b) introduces an energy change 8E(H, E) /¢ over
a period of the pendulum. Equilibrium orbits satisfy E = 0,
and stable ones require d6E /0E < 0. We can compute §E in
the limiting cases of large energy, small amplitudes, and for
the heteroclinic orbit E = H (Appendix A):

SE(H,E > {H,1}) = —47/2¢E*?, (7a)
SE(H,E ~ —H) = 271\/%(1 —HYE +H), (7b)

SE(H.E = H) = 8veH(1 — 3H). (7¢)

We recover the stability range of the FP regime obtained
with the linear stability analysis from Eq. (7b): the minimum
energy state is stable if H > 1 (8E < 0), while it is unstable
if H < 1. In the latter case, the system finds one of the two
oscillating regimes, WW, or CO. From Eq. (7c), we see that, if
H > 1/3, the energy decays on the heteroclinic orbit, leading
to the selection of the WW, regime. In contrast, if H<1 /3,
the energy increases on the heteroclinic orbit, corresponding
to the selection of the CO regime. We thus recover the scaling
observed numerically for IT*(h).

We can compute the energy change E (H, E) numerically
[Fig. 3(a)]. For H = 1/3, we actually find two stable solu-
tions, one bounded (E < H) and one unbounded (E > H).
This is the hallmark of a hysteresis: two stable solutions
coexist within a small range of H. For a large enough ex-
ternal field H > }L =~ 0.3357, the only stable solution is
bounded, corresponding to a WW,, regime. For a small enough
external field H < H_ ~ 0.3314, the only stable solution is
unbounded, corresponding to a CO regime. In contrast, within
the range [H_, H,], the initial condition sets the stationary
solution reached by the system. Remarkably, the transition
from regime WW, to regime CO is a double saddle-node
bifurcation of limit cycles [Fig. 3(c)]. Indeed, as one stable
limit cycle reaches instability, it collides with an unstable
limit cycle, which exists in the entire coexistence region, and
goes through the zero-frequency heteroclinic orbit at precisely
H=1/3.

Finally, we simulate Eq. (4), placing ourselves at H = 1/3,
very close to the exceptional point (H = 10~*). We start from
two initial conditions, which, within the above mapping, have
energies £ = H + 6, where 0 < § <« 1, ie., slightly below
and slightly above the heteroclinic orbit’s energy. We find
that both initial conditions converge toward the predicted
stable orbits [Fig. 3(b)]. The transient regime is very long,
as expected close to the exceptional point. After confirming
the hysteresis, we perform an annealing simulation, slowly
varying H back-and-forth around 1/3, keeping H = 10~*. We
compare the main frequency of oscillation of ¢ (obtained from
the largest peak of its FFT) to the frequency of the stable
pendulum solutions found above. We find a perfect agreement
between the predictions and the numerical data [Fig. 3(c)],
with a hysteresis loop. Note that this coexistence is not visible
in Fig. 2(a) because of its minute range. Interestingly, as
one approaches the transitions, the WW, and CO regimes’
frequency never vanishes, meaning that no stable pendulum
orbits are selected in the vicinity of the heteroclinic orbit.

4. Expansion close to the FP-WW transition

To understand better the transition between the FP and
WW regimes, we expand the dynamics around this transition
by setting IT = I1. + ¢, with ¢ <« 1. There, the amplitude of
the weakly nonlinear limit cycle branching off from the FP
regime, corresponding to the WW, regime, can be computed
using multiple-scale analysis (Appendix B).

One introduces the slow timescale T = et and expands the
variables R(t), ¢(t), 8(t) in ¢. At order 0, only the equation on
R is nontrivial. At the order 1/2, we find for ¢ and 6,

1 )
(‘g) = ﬁA(T)(l N iﬁ>elﬂf +cc., 8)

where c.c. indicates the complex conjugate of the previous
term. Solving for orders 1 and 3/2, we find the amplitude
equation

. A )
A=7 —ZIAPA, ©)
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FIG. 3. Single particle in a degenerate harmonic potential: mapping with the physical pendulum close to the exceptional point. (a) Energy
drift 8E as a function of E /H, for different values of H (Appendix A). Stable orbits are highlighted with a green marker. (b) Phase portrait
of two transient regimes at H = 1/3, with initial energies slightly above and below the heteroclinic orbit’s energy (black dashed line); the
heteroclinic orbit is the unstable fixed point in panel (a) for A = 1/3, and the separatrix of transients. The stationary regimes obtained
correspond to the stable orbits shown in panel (a) for H = 1/3. (c) Rescaled fundamental frequency of oscillation of ¢ as a function of
the rescaled distance to the threshold, for a small field H = 10~*. Colored markers represent numerical simulations (green: CO, red: WW,),
and the solid black lines (resp. solid gray line) are the stable (resp. unstable) solutions of the pendulum equations.

where Z is a complex number (Appendix B), from which we
deduce the amplitude

Al = I 2(4h+1)
© V2Z,  \ h(h+ DBh+5)’
where Z, is the real part of Z. The amplitudes of the os-

cillations of ¢ and @ are proportional to /e, indicating a
supercritical Hopf bifurcation.

(10)

5. Small field expansion

For h = §h, with 6h <« 1, and far enough from the ex-
ceptional point, one can linearize the dynamics around the
stationary CO regime (Ry = VT /o, cos yo = wo/~TI, ¢ =
Qp = wyVv Il — a)(z)) (Appendix C). Introducing the small
quantities R(t) = Ry + 6R(t), y(t) = yo + Sy (¢), and ¢(t) =
Qot + §¢(1), we show that the CO regime is linearly stable
and that the field acts as a sinusoidal forcing of amplitude 64
and frequency €2y. The amplitude of the resulting oscillations
(OR, 8¢, 8y) = (Ag, Ay, Ay )e!S2o! depends on the distance to
the exceptional point, with

1/w?
Al /%
A, | =] V(M-wj) | (1)

1 1/(w0y/T — )

The divergence of the modulation amplitudes along ¢ and y
when [T — a)(z, points at a singular behavior at the exceptional
point.

B. The nondegenerate case: ®} < ®}

In the nondegenerate case, the rotational symmetry is bro-
ken, even in the absence of an external field. As we shall see,
this significantly modifies the phase diagram, but also reduces
our ability to make precise analytical statements beyond the
linear stability of the fixed points. Also, the orientation of the
field with respect to the stiff (y), or soft (x), direction matters.

1. In the absence of an external field h = 0

Coming back to Egs. (3), we consider the fixed points
and their stability threshold IT.. There is again an infinite set
of fixed points parametrized by the orientation 6y, (6y, u =
(ITcos6y/ a)f I1sinBy/ wf)), which now describe an ellipse of
equation '

a)ﬁuf + a);‘ui =% (12)
Here, the linear stability of the fixed points depends on the ori-
entation 6y: I1.(6y) = wﬁw% / (a))% cos 6y + a)§ sinfg); so that
for IT > I, the fixed points oriented along 6y are linearly
unstable (Fig. 4). There is again always a zero eigenvalue, so
that even stable fixed points are marginal. The fixed points
which destabilize at the smallest value of IT are the ones
where the particle points in the stiffest direction (6p = £ /2),
with T, = @?, leaving two disconnected sets of marginally
stable fixed points for w? < IT < a)}2 (Fig. 4-left). The fixed

O o

E O :
: > 11

2
Wy

|

|

!

!

|

|

!

é

wi

FIG. 4. Linear stability of the fixed points of the dynamics for a

single particle in a nondegenerate harmonic potential with w? < w?,

in the absence of an external field: The fixed points, represented in the

(uy, uy) plane, are distributed along an ellipse, as given by Eq. (12),

and the stability threshold I1. depends on the orientation 6, (which is

also the angle with respect to the x axis of this fixed point). The red

overlay indicates the marginally stable fixed points; when absent the
fixed points are linearly unstable.
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FIG. 5. Single particle dynamics in a nondegenerate harmonic potential (w? = 1, w)z, = 2), in the presence of an external field: (a) Phase
diagram with the field in the stiff direction & = h,&,; (b) phase diagram with the field in the soft direction h = h,é&,; the color codes for the
value of 2, /€2,—the ratio of the oscillation frequency of the displacement along the x and y directions—as indicated in the legend. Each point
in the diagram is the result of an independent simulation, with a random initial condition. As such, areas of parameter space where two colors
appear intermingled, indicate zones of coexistence between different dynamical regimes. The solid black lines indicate I1.(h,/,), as obtained
from linear stability analysis. (c)—(g)-left: dynamics of the displacements in the dynamical regimes as named; the trajectory is plotted during
one period of oscillation, and colored with time running from dark blue to red; the dark arrows are snapshots of the orientation of the active
force 1. (c)-(g)-right: corresponding dynamics of the phases (0, ¢) with the same color code. Nota bene: the WW,, and the CO? regimes share
the same color code because €2,/$2, = 2 for both of them; they can however not be confused because WW, is a bounded phases regime, while

the phases are unbounded in the CO? regime.

points which destabilize at the largest value of IT are the ones
where the particle points in the softest direction (6y = 0, ),
with 1, = a))z For IT > wf, all fixed points are unstable (Fig.
4-right).

At large enough activity, no fixed points are stable, thus
a dynamical regime must set in. The periodic solutions have
been studied in Ref. [35], revealing a rich behavior de-
pending on B = I1/w? and the eccentricity of the harmonic
potential, € = (a)f, — w)%)/a)f (see Fig. 2 of Ref. [35]). For
small enough eccentricity €, the authors recover elliptical
chiral orbits, similar to the degenerate case studied above
(Sec. III'1); while for larger €, many different periodic so-
lutions are observed. The orbits can be classified according
to the number p of self-crossings performed by the parti-
cle trajectory into the (x,y) plane: p = 0 for elliptic orbits
(such as the circular chiral orbits of the degenerate case),
p = 1 for lemniscates (figure-eight-like motion), and p > 1
for higher-order generalized lemniscates. In the same vein,
there are two types of periodic motion: the phase-unbounded
one, meaning that 71 performs a full 27 rotation (R) within
one period, either clockwise or counterclockwise; and the
phase-bounded ones, where # swings back and forth in li-
brational (L) motion. Orbits with even p (resp. odd p) are
of type R (resp. L). The phase diagram obtained numeri-
cally also indicates that as soon as @} < @] (¢ > 0), there

are orbiting solutions existing in the range »? < I1 < a))z,,
coexisting with the sets of marginal fixed points. However,
the range of coexistence seems to decrease with increasing

ellipticity €.

The role of the noise on the dynamics has not been studied
in detail and only numerical results are available. The orienta-
tion of the particle diffuses on the continuous sets of marginal
fixed points and the noise blurs the orbiting dynamics. For
very large noise, one observes a Boltzmann-like density cen-
tered on the mechanical equilibrium. There is however a case
of interest that was described in Ref. [41], when w? < a))z

and a)ﬁ <Mk a)f. In this case, the deterministic dynamics
is frozen on one of the marginal fixed points set by the initial
condition. When adding noise, one expects the dynamics to
diffuse in each continuous set of marginal fixed points, with
the possibility of stochastic jumps between the two sets. Nu-
merical simulations indeed report such jumps, however, the
analysis of the power spectrum of the dynamics reveals that
they take place with a temporal regularity. So far, no proper
stochastic theory accounts for this peculiar dynamics.

At the collective level, this oscillating dynamics translates
into a so-called Noise-Induced Collective Actuation (NICA)
regime, whose amplitude and frequency increase with IT and
the noise amplitude [41]. The emergence of such oscillations
is well captured by the coarse-grained dynamics, as described
below.

2. Adding an external field h

In the nondegenerate case, the orientation of the field mat-
ters. We shall discuss the two extreme cases, when the field
points in the stiff (b = hé,) or the soft (h = hé,) direction
(Fig. 5). In light of the variety of solutions already observed
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in the absence of external field, we don’t aim at exhaustively
studying the influence of the field on all of them. We con-
centrate on moderate value of [1/w? < 5 and one eccentricity
ratio a))z, = Zw)%, for which the CO regime in the absence of an
external field is a simple elliptic chiral oscillation.

As for the degenerate case, any amount of external field
reduces the number of fixed points to two. The one with the
active force pointing in the direction opposite to the field is
always linearly unstable.

(i) h = hyé,. When the field points along the stiff direction
of the potential, the fixed point polarized in the direction of
the field destabilizes linearly for I1 > I1, = w? 4+ h, via a
Hopf bifurcation [Fig. 5(a)]. Both the analysis conducted in
the degenerate case and numerical simulations suggest that
this transition is supercritical. The dynamical regime observed
for IT 2 T1. is extremely similar to that observed in the de-
generate case [see Fig. 2(b)]. Conversely, the nondegeneracy
considerably modifies the phase diagram: the domain of ex-
istence of the CO regime shrinks and is limited to small
fields when IT > w?. For larger IT and larger fields, it coex-
ists with a WW, regime that already exists in the zero-field
case (Fig. 5(c) and [35]). Numerical inspections indicate that
this WW,, regime and the one reported for IT 2 TI. connect
continuously in a smooth crossover.

(i1) h = hyé,. When the field aligns with the soft direction
of the potential, the fixed point polarized in the direction
of the field destabilizes linearly for IT > I1, = w% + h,, via
a Hopf bifurcation [Fig. 5(b)]. Here also, the transition is
supercritical. The dynamical regime observed for IT 2> I, is
a WW regime around the direction of the field, which is now
the soft one: this is the WW, reported in Fig. 5(d). Again,
the CO regime shrinks and is limited to small fields when
= a)i. For larger I, yet at small fields, one recovers the
WW, regime reported above [Fig. 5(c)]. However, in contrast
with the previous case, the WW regimes observed at low field
and large IT and the one observed at large field close to I1, are
orthogonal. As a result, the smooth crossover taking place in
the case of a field aligned with the stiff direction is replaced
by a succession of complex dynamics illustrated in Figs. 5(e)

to 5(g).
IV. COARSE-GRAINED DYNAMICS

One central observation of our companion paper [34] is
that the transition to the regimes of collective actuation is
marked by a reentrance, which is absent from the single
particle dynamics described in the previous section. More
specifically, intermediate polarizing fields promote collective
actuation, which takes place at lower values of Il than in
the absence of a field. At large fields, one recovers the de-
laying of the transition by the external field observed for the
single-particle dynamics. The reentrant transition can easily
be understood from the linear stability analysis of the Frozen
Polarized (FP) phase in the framework of the coarse-grained
model introduced in [20]. With an external field, this model
generalizes to

oU = Ilm + F,[U], (13a)
1 — m?
oom= (m x [0,U +h]) x m + (0,U +h) — Dm,
(13b)

where U (r, t) and m(r, t) are now continuous fields obtained
from a local average procedure. The elastic force F, [U] is
given by the choice of an elastic constitutive relation and
the relaxation term —Dm, with D > 0, is inherited from the
microscopic angular noise.

Let us recast here the main steps of the derivation of
these equations. The dynamics of the translational degrees
of freedom being linear, obtaining its coarse-grained form is
straightforward. We then take advantage of the fact that the
elastic force being a second-order derivative of the displace-
ment field, it smoothes the displacement field on lengthscales
smaller than [* o« [T71/2, as obtained from the balance of
the active driving and the elastic forces. This considerably
simplifies the coarse-graining of the polarity dynamics, as we
can safely ignore the fluctuations of the displacement field.
Rewriting the deterministic part of the dynamics for the mi-
croscopic polarity Eq. (1b), using the projector to the normal
of #i and ignoring the fluctuations of the displacement field,
one finds

om = (I — (a; ® 7;))(O,U + h). (14)
From invariance by rotation,
(; ® ;) = (m)I + Y (m)m @ m, (15)

where ¢(m) and v (m) are two functions of m, which must sat-
isfy one additional constraint: since Tr(%2; ® fi;) = 1, one must
have Tr{fi; ® i1;) = 1, for any distribution of orientations.
When m = 0, this constraint imposes ¢(0) = 1/2. When m =
1, the equality of all 72; imposes ¥ (1) = 1 and ¢(1) = 0. As
a simple ansatz, we write (i; ® f1;) as the only second-order
polynomial in m that is compatible with the above constraints:

1 —m?

I+mQ@m. (16)

The rotational noise acting on the #;'s simply coarse-grains
into —Dm, following It6 calculus or the approach introduced
in [42]. A few lines of calculations then lead to Eq. (13).

In principle, these equations must be completed by bound-
ary conditions where the displacements or forces are specified.
However, we shall consider here a simpler mean-field version
of the model, assuming that the dynamics condensates on
two spatially homogeneous modes of stiffnesses @? and w?,
as observed both experimentally and numerically whenever
collective actuation sets in [20,25]. Note that, for a)ﬁ = w?,
this convention virtually represents a two-dimensional elastic
sheet with adhesion to the substrate [23]. The above equa-
tions then simplify into

U, = lm, — 0’U,, (17a)
Uy = Mmy — U, (17b)
) 1—m?+ mf .
my = ———— Uy + hy)
2

— mymy(Uy + hy) — Dmy, (17¢)

iy, = —mumy(Uy + hy)
1+m?— m§ )
+———— U+ hy) = Dm,. (17d)

045505-7



BACONNIER, DEMERY, AND DAUCHOT

PHYSICAL REVIEW E 112, 045505 (2025)
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FIG. 6. Coarse-grained dynamics in the degenerate case and the
absence of an external field: (a) Amplitude of the polarization m as
a function of I1/w3, as given by Eq. (19a); the solid, respectively
dashed line indicates a linearly stable (m™), respectively unstable
(m™) solution. (b) Rotation rate of the linearly stable solution Q%
for the same values of IT/w?, as given by Eq. (19b). The colors
indicate the amplitude of the relaxation term: from blue to red D =
{0,0.1,0.2,0.5, 1, 1.5}; w3 = 1.

In the following, we shall investigate the phase diagram for the
above dynamics in the degenerate (0? = a))z,) and nondegen-

erate (w)% < wyz) cases, in the presence and absence of external

field, and considering D > 0.

A. The degenerate case: 0} = @] = &;

1. In the absence of an external field h = 0

In contrast with the single-particle description, here, due
to the presence of the relaxation term —Dm, the only fixed
point is (U = 0, m = 0), which describes a disordered phase.
This fixed point is linearly stable for I < I, = 2(wj + D).
At threshold, a Hopf bifurcation takes place. From invari-
ance by rotation, one can, as for the single particle, rewrite
the dynamics in polar coordinates U = (R cos ¢, R sin ¢) and
m = (mcosf,msinf):

R = [Tmcosy — a)(z)R, (18a)

. 1 —m? 2

h=— (Mm — wgRcosy) —Dm,  (18b)
1 2 I

p = ( ;me wiR — Tm) siny, (18¢)

. 1 2

6= ™ 2Rsiny, (18d)

with y = 6 — ¢. This allows for an exact computation of the
steady rotating solutions. One finds that two orbiting solutions

emerge from a saddle node bifurcation, taking place at I, =
(wo + ~/D)? (see Fig. 6):

2_p 2 _D\? 21D
R e 292 L (19w
n m m

[ +m2)
Q= o =1
0

The m_ solution is linearly stable, while m_ is unstable. The

wo—vD
—w§+J5' We thus

find that the nature of the bifurcation from the disordered
state depends on D. When D < wé, the transition is subcritical
and the polarization jumps discontinuously from zero in the
disordered state to a finite value in the rotating phase. Con-
versely, when D > w(z), the stable orbiting solution branches
off continuously from the zero-polarization disordered state.
Surprisingly, except when D — 0, the rotation rate is always
finite at the transition. When the transition is discontinuous,
the rotation rate at the saddle node is 2, = a)g(D/wg)l/“.
When it is continuous, the rotation rate at the transition is
Q. = w}(D/w})'?. Note that this transition scenario is in
sharp contrast with the noiseless single-particle, where the
transition to CO is supercritical.

It is interesting to elaborate on the connections between the
zero-field coarse-grained equations and their chiral oscillating
solutions [20], and recent theoretical work on modeling of
dense pedestrian crowds [25]. Indeed, the mean-field equa-
tions proposed in [25] from symmetry considerations for the
dynamics of the displacement and polarity of the crowd are
formally equivalent to Egs. (13) at the linear level. The differ-
ence between the two models comes from the nonlinear terms,
which, in Egs. (13), are obtained from the local averaging
procedure. First, Gu et al. considered that the coefficient in
front of the nonlinear reorientation term (m x o,U) X m is
negative. Moreover, in Eqs. (13), the term in front of the
8,U term exhibits a nonlinear saturation (1 —m?)/2. The
emergence of chiral oscillations in dense crowds [25] and
in polar active solids [20] therefore seem to share the same
mechanism.

m4y =

(19b)

polarization at the saddle node is mg, =

2. Adding an external field h

Figure 7(a) displays the phase diagram obtained numer-
ically, solving Eq. (13), for @3 = 1, h = h&,, and D = 0.1.
One recovers the same four dynamics reported in the case
of a single particle. For small enough II, the system is
frozen and polarized in the direction of the field. This
state is described by the unique stable fixed point when
h > 0, which reads (U, =0,U, = Hmy/wg, m, =0,m, =
V14 (D/h)*> — D/h). The Jacobian, evaluated at the fixed
point, diagonalizes by blocks in the x and y spaces. The fixed
point destabilizes via a Hopf bifurcation that is controlled by
the eigenvalue associated with the y subspace. The resulting
threshold reads

h*(w§ + ~/D* + h?)
D+ h? — DVD? 1+ h?

and is illustrated for increasing values of D in Fig. 7(b).

I.(h,D) = (20)
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FIG. 7. Coarse-grained dynamics in a degenerate potential,
(07 = @; = 1) with a field: (a) Phase diagram for D =0.1; the
color code and the type of dynamics is the same as for the sin-
gle particle [see Fig. 2(a)]. The thick black line indicates the
linear stability threshold for the fixed point corresponding to
the FP state. (b) Stability threshold of this fixed point for D =

{0.01,0.1,0.25,0.5,0.75, 1, 1.25}.

The central observation to be made is that the phase di-
agram for the coarse-grained dynamics at low enough noise
D < w} exhibits a reentrance transition from the frozen to the
oscillating phases. Intuitively this can be understood as fol-
lows: for low enough field, the polarization of the frozen phase
“helps” the onset of the collective actuation by introducing
some level of ordering in the orientation of the active forces;
conversely, for large field the polarization opposes the collec-
tive actuation by imposing strongly one specific orientation to
the active forces.

There is a correspondence between the stability threshold
of the FP state in the presence of a field [Eq. (20)] and the
rotating solutions in the absence of a field obtained in the
previous section [Egs. (19)]. Indeed, using the polarization of
the FP state m instead of the polarizing field / in the expres-
sion (20) for the stability threshold, and then solving for the
polarization m in the resulting equation, we recover Eq. (19a).
As a consequence, Fig. 6(a) and Fig. 7(b) are equivalent under
the relation between m and 4 in the FP state. This means that
the activity [T necessary to rotate a state with polarization m
in the absence of a field is identical to the activity necessary to
destabilize a frozen state with a polarization m resulting from
an external field.

Once collective actuation sets in, one recovers essentially
the same dynamics as for the single particle, namely the Chiral
Oscillation (CO) at low enough field, and the Windscreen
Wipers (WW% and WW,) at larger fields. To date, no ana-
Iytical solution for the boundaries separating the domain of
existence of these dynamics has been obtained.

B. The nondegenerate case 0} < o,
1. In the absence of an external field h = 0

As for the degenerate case, the relaxation term —Dm
imposes the uniqueness of the fixed point (U =0,m = 0)
describing the disordered solution. Although the isotropy of
the dynamics is broken, the x and y directions still decouple
in the linearized dynamics around the fixed point and one
easily finds that the fixed point destabilizes, following a Hopf
bifurcation, along the softest direction when IT > 2(a)§ + D).

The oscillating dynamics selected at the Hopf bifurcation
is rather specific as the oscillations occur only along the soft
direction, namely the x-axis. The frequency of the oscilla-
tion Q ~ D'/? and a weakly nonlinear analysis demonstrates
the supercritical nature of the bifurcation. This is the Noise-
Induced Collective Actuation dynamics discussed thoroughly
in Ref. [41]. The NICA regime is replaced by the CO regime
for larger values of I1, yet smaller than Z(wf, + D). However,
the stability of the NICA regime in the coarse-grained dynam-
ics has not been investigated.

2. Adding an external field h

Here also, because of the nondegeneracy, the orientation
of the field matters and we shall analyze the two extreme
cases, when the field points in the stiff (& = h,é,) or the
soft (h = h,é,) direction. We again concentrate on moderate
values of IT/w? < 5 and one eccentricity ratio w? = 2w?, for
which the CO regime in the absence of an external field is a
simple elliptic chiral oscillation.

As for the degenerate case, at small enough IT, there is only
one linearly stable fixed point, corresponding to the FP state in
the direction of the imposed field, and the Jacobian, evaluated
at the fixed point, diagonalizes by blocks in the x and y space.

(i) h = hye,. The fixed point (U, =0, U, = Im,/e?,
my = 0,my, = /1 + (D/hy)*> — D/hy) destabilizes via a Hopf
bifurcation that is controlled by the eigenvalue associated with
the x subspace. From the point of view of the linear instability,
the situation is thus perfectly analogous to the degenerate

Sh o2 : 2.
case, with w; replacing wyg:

hi(wf + /D> + )
. (21)
D>+ —D /D> +h

The phase diagram [Fig. 8(a)] inherits both the properties of
the single particle and the coarse-grained dynamics. On one
hand, there is a strong shrinkage of the domain of existence
of the CO regime, as compared to the degenerate case, and
a smooth crossover across WW, regimes from small to large
fields. On the other hand, one observes the reentrance transi-
tion when increasing 4 for IT < I1.(h = 0).

(ii)h = h,é,. The fixed point polarized in the direction
of the field (U, = m,/w?, Uy = 0, m, = /1 + (D/h,)* —
D/h,, my, = 0) destabilizes via a Hopf bifurcation. However,
in contrast with all previous cases, the real part of both eigen-
values cross each other when varying IT or 4. As illustrated in
Fig. 8(d) for increasing values of D, we now have I1.(h,, D) =
min(IY, ®), with

Hc(hya D) =

hi (@] + /D? + h?
D2+ k2 —D\/D>+ 1%’
h(w? + /D* + h2)

DYD?+ 12 -Dp?
resulting in a far more complex phase diagram [Fig. 8(b)].
For low enough noise, the intersection of the real parts of the
eigenvalues leads to the presence of a cusp in the stability

boundary, leading eventually to a double reentrance. These
reentrances not only concern the transition from the FP state

n,, D) =

(22a)

> (hy, D) = (22b)
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FIG. 8. Coarse-grained dynamics in a nondegenerate potential, (> = 1, ®? = 2) in the presence of an external field: (a) Phase diagram
with the field in the stiff direction & = h,&,; the solid black line indicates Ht.(h),) as given by Eq. (21). (b) Phase diagram with the field in
the soft direction & = h,&,; the solid black line indicates I1.(%,) as given by Eq. (22). In (a)-(b), the color codes for the value of 2,/ as in
Fig. 5. The dark blue domain corresponds to the NICA dynamics, which is confined to the x direction; (c) Enlargement on the small fields,
close to the destabilization of the fixed point, as indicated by the rectangle dashed lines in panel (b). (d) Limits of linear stability of the Frozen
Polarized (FP) state for increasing values of D = 0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.25: the red to orange dashed lines indicate l'Ig”(hx, D) and the
blue to green dashed lines indicate [1?(h,, D); the solid black lines indicate I1.(h,, D) = min(ITV, T1?) (see text for details).

to the collective actuation ones, they also shape the complex
transition and coexistence lines between the various oscillat-
ing regimes [Fig. 8(c)]. We also note the dark blue region
in the phase diagram, illustrating the extension of the NICA
regime to finite fields, a feature that is absent when the field
acts in the stiff direction.

V. CONCLUSION

An external field acting on the orientation of the active
forces in a polar active solid gives rise to a rich diversity of
oscillating dynamics. In this work, we have explored and de-
scribed them at the single-particle and coarse-grained levels.
In both cases, when the modes selected by the active dynamics
are degenerate, analytical results are available, even in the
presence of a field. However, when the modes are nonde-
generate, the complexity of the oscillating regimes prevents
analytical descriptions, and one must rely on numerical simu-
lations to characterize the regimes and the transitions between
them.

Much more work remains to be done to understand thor-
oughly the nondegenerate case in the presence of an external
field, especially the oscillating regimes emerging for large
stiffness ratio between the selected modes [35]. The transition
to collective actuation in large systems in the presence of an
external field is another matter of interest. In Ref. [20], it
was shown that the phase space coexistence of disordered and
CO dynamics at the coarse-grained level translates, in finite
systems, into their spatial coexistence during the transition to
collective actuation. Here, the recurrent coexistence of differ-
ent oscillating regimes begs the question of the possibility of
their spatial coexistence in a large polar active solid.

The structure of Egs. (1) and (13) reveal that an exter-
nal polarizing field h is equivalent to a change of Galilean
frame of reference moving at constant velocity V o k. This
connection between polarizing fields and mechanical driving
thus raises the question of the response of active solids to
applied mechanical stresses, and of the possible emergence of
odd elastic moduli in such systems, which is ripe for further
research.

Finally, if such polarizing external fields could be en-
gineered or evidenced in biological contexts, such as in
confined cell monolayers [24,43], or dense bacterial suspen-
sions [44,45] and bio-films [23], our work could help to
uncover new mechanisms for oscillatory dynamics and reg-
ulation in living systems.
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APPENDIX A: SINGLE PARTICLE IN THE DEGENERATE
CASE: MAPPING OF THE DYNAMICS ON THE
WEIGHTING PENDULUM, CLOSE TO THE
EXCEPTIONAL POINT

Starting from Eq. (4), we define & = (TT — w})/w3, p =
R—1,H= h/a)(z). Rescaling time by wé, we obtain

p=U+¢e)cos(y)—1—p, (Ala)
_1+ey Alb
¢ =7 s sin(y), (Alb)

y = <p _2 8) sin(y) — Hsin(y +¢). (Alc)
p+1

The scaling of the transition lines I, and IT* suggests dif-

ferent limit behavior when ¢ — 0 with H = H/e constant: FP

for H > 1, WW, for 1/3 < H < 1, and CO for H < 1/3. To

identify the asymptotic solutions to the equations of motion,
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we rescale the different quantities with . The case without
external field suggests

p(t) = ep(et), (A2a)
p(t) = p(J/er), (A2b)
y () = ey (Vet). (A2¢)

Inserting these scaling forms in the equations of motion,
we next separate the different orders in ¢ in the limit ¢ — 0.
At zeroth order, we find

~2
- Y
=1-=—, A3
P 5 (A3a)
o=y, (A3b)
y = —H sin . (A3c)

p is actually a fast variable, which relaxes instantaneously to
1 — #2%/2 in the limit ¢ — 0 [Eq. (A3a)]. The equations for
@ and 7 describe a pendulum [Egs. (A3b) and (A3c)]: ¢ =
—H sin ¢. At this order, the energy

E=2"-—Hcos§
) @

<

(A4)

is conserved and there is no mechanism to select the orbit.
At the next order in ¢, Eq. (A3c) becomes

y =—Hsing + ey (1 — > — H cos @). (A5)
This new term generates an energy drift:
E = ep’[l - 7* — Hcos g, (A6a)

= 2./¢[E + Hcos ][l — 2E — 3H cos @]. (A6b)

Close enough to the exceptional point, the drift is slow, allow-
ing to define the energy change over one period:

T
SE = / E(t)dt. (A7)
0

For a given value of A, to any orbit of energy E is associated
an averaged energy drift §E(H, E). If, for such orbit, E > 0
(resp. SE < 0), the energy drift increases (resp. decreases) en-
ergy over time. Equilibrium orbits satisfy §E = 0, and stable
ones require d0E /OE < 0.

We can compute §E in the limiting cases of very large
and very small energies, and for the heteroclinic orbit E = H.
When E > H and E >> 1, we are in the fast chiral state with
@(1) ~ +/2Et, and the energy change over a period is, at lead-
ing order, E = —4m+/2¢E*? < 0. On the contrary, when
E + H « H, the amplitude of the oscillations is small and
we can expand the cosine in Eq. (A6). At leading order, we
get 8E = 2m+/e/H(1 — H)(E + H). This result shows that
the state E = —H is stable for # > 1 and unstable for H < 1;
however, it does not provide the amplitude of the oscillations
close to the threshold. These can be obtained by expanding
at the next order: taking @(t) = A cos(wt), with v = VA , We
obtain for the energy drift:

8E = JeHA’T[3(1 — H) — ZHA?]. (A8)

The amplitude A is obtained by solving §E = 0, leading to

81—H (8T —wi—h
A= |z—— =] :
5 H 5 ok

For the frequency, we note that ¢(t) = @(/et) =
Acos(\/ﬁt). Altogether, we obtain in the small amplitude

regime:
o) 8I1 — a)(z) —h h ,
~,————cos| [—t]).
v 5 h o

On the heteroclinic orbit, E = H, the energy change is
2
SE = \/281:1/ V1 +cos@(l —2H —3H cos p)do,
0
=8VeH(1 - 3H).

Hence, if H > 1/3, the energy decays on the heteroclinic
orbit; this is the WW,, regime. In contrast, if H<1 /3, the
energy increases on the heteroclinic orbit: this is the CO
regime.

Finally, we can compute the energy change 8E (H, E) nu-
merically, using Eq. (A6) and the exact expressions of the
pendulum solutions [47] [Fig. 3(a)].

(A9)

(A10)

(A11)

APPENDIX B: SINGLE PARTICLE IN THE DEGENERATE
CASE: WEAKLY NONLINEAR WW REGIME OF THE
SINGLE PARTICLE

We start from the equations for R, ¢, and 6 =y + ¢
[Eq. (4)], where we set wj = 1:

R =TIcos(d —¢) —R, (Bla)

) IT .

@ = —sin(@ — ¢), (B1b)
R

6 = Rsin(d — ¢) — hsiné. (Blc)

The linear stability analysis of the state (R =11, 0 = ¢ =
0) gives the instability threshold I1, = 1 + A. To study the
weakly nonlinear regime close to the instability, we take
IT =TI, + ¢, where ¢ < 1. We introduce the slow timescale
T = et, so that 9, becomes 9; + €97, and the expansions

R(t) =) “Ri(t. T), (B2a)
k>0
o) =" o, T), (B2b)
k>0
0(t) = &'/? Zska(t, T). (B2¢)
k>0

The exponents are suggested by numerical simulations, but
they can also be determined from the equations.

1. Orders 0 and 1/2

At order 0, only the equation on R is nontrivial and it
reduces to d,Ry = I1, — Ry, leading to the constant solution
Ry =TI1, after a time 1. The lowest order for the dynamics
of ¢ and 6 is the order 1/2. Using Ry = I1, = 1 + A in these
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equations, we get

3 <‘g§> = B(‘gg), (B3)

where we have introduced the matrix
—1 1
B=<—l—h 1). (B4)

The eigenvalues of B are o = iv/h and o* = —iv/h (the
star denotes the complex conjugate); the associated eigenvec-
tors are W and W*, where

1
W <a> (BS)

and where we have defined a = 1 + iv/h. The solutions are
thus

(gg;’) = ATV 1 AT )W e Vit (B6)

2. Order 1
At order 1, the equation for R is

AR+ Ry = 1= 25— o), ®7)
where we have used that 7Ry = 0. We can compute
o — 90)* = (iNhAY™ 4 cc.)?
= 2h|A]* — (hA2*VM 4 cc),  (BS)

where c.c. denotes the complex conjugate of the preceding
term. We can write the solution for R; as

Ry = 1 — hIT|A]> + p®™VM 4 cc., (B9)

where p is solution of (1 + 21\/5),0 = hI1.A?/2. Finally, we
find

hHCAz 21[[

21+ 2ivh)" e

R =1—hIl AP + (B10)
3. Order 3/2

To determine the equation for 6 at order 3/2, we need the
expansion of IT/R:

I1 I, +¢ I -R

— >~ B11
R M ter  °TTL B1D
The equations for ¢ and 6 are thus
1 -R,
0p1 + @1 — 61 = —dreo + (6o — ¢o)
1 3
- 3(90 —¢o), (B12a)

0,01 + (1 +h)pr — 01 = =970 + Ri1(6p — ¢o)
I, 3, s
- ?(90 — @) + 890. (B12b)

We see that ¢; and 6; are driven by terms that are at their
resonance frequencies +/, which may cause a divergence.

Assuming that there is a solution gives a condition on the
right-hand side. To see this, we write these equations as

b1 1) _
(5)-o(5) -+

Now restricting ourselves to terms at the frequency w =
«/E, which we denote by [-] Vi e get

wi-o[(5)).-

This is an equation of the form (ivh — B)X = C, so that
the solution could be looked for as the combination X =
AW+ A, W™, Inserting this decomposition in the equation,
and using that BY = i~/h¥ and BU* = —i\/E\Il*, we obtain

(B13)

(L] 5 (B14)

21\/5)»*\11* = C, meaning that C should be collinear to W*.
This condition can be written with the determinant: Cy —
a*C, = 0, where C,, and Cy are the components of C = [L] ,
which we now determine explicitly.
For the derivatives with respect to 7', we obtain
[Orgol 7 = A, (B15a)
[0r60] j; = aA. (B15b)
We have
[60 — pol 5 = ivhA, (B16)
and
[R1(6o — ¢0)l sy
= [Rilo[60 — @0l s + [Ril, /(600 — @0l _ 5 (B17a)
hT1.A2
= (1 — AL JAP)ivVhA MY (—iv/hA*) (B17b)
2(1 + 2ivh) )
ih/h11, 1
= ivhA — L(2 + —)|A|2A. (B17¢)
2 14 2ivh
The cubic terms are given by
[(60 — 900’1 /5 = 3160 — wol’ ;160 — @0l _ 5
= 3(ivVhA)2(—ivhA®)
= 3ihv/h|A|?A, (B18)

and
[65] /7 = 3160l f[eo] = 3(aA)*(a*A*) = 3all.|A|*A.
(B19)

We have used that |a|> = 1 +h =11
We can compile these terms:

- ihh 1 h
C,=—A+- */_<2+ )|A|2A—’ f|A|2A
2 1+2ivh
(B20a)
— A+ hf L+ lf (B20b)

ol
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For Cy, we get

. ihA/hI1, 1
Cy = —ad +iv/hA — Vh <2+ )|A|2A
2 14 2ivh
iha/hI1, hIl,
_ihh APA + LA 2A (B21a)
2 2
. hI1.(4h — ivh + 1
— —ad +ivia + M ivh )|A|2A. (B21b)
2(1 + 2iv/h)
The equation Cy—a*C, =0 thus reads, after
simplification,
. A )
A= > —Z|A|PA, (B22)
where
h+ 1)(8K2 + 5h = 2ih/h + ivh
7= A D@+ inv/h + ix'h). (B23)
4(4h+ 1)
The real part of Z, Z,, sets the amplitude
1 2(4h + 1
|A| = = @r+1) . (B24)
V2Z, h(h+ 1)(8h +5)

The imaginary part of Z introduces a correction to the oscillat-
ing frequencies #+/. Moreover, we can obtain the asymptotic
behaviors of the amplitude:

2
Al ~ — B2
AL~ e (B25a)
IA| ! (B25b)
h—o0 h

These behaviors are expected: as & — oo, the motion is
more and more constrained by the external field and the am-
plitude decays. On the contrary, as # — 0 the system is closer
and closer to the exceptional point and the amplitude diverges.

4. Numerical simulations

In the numerical simulations, we observe that the an-
gle 6(¢) follows 6(t) = Ap cos(wt) close to the instability
threshold. From the above analysis, it follows that Ay =
21+ hi/eA, where A is the amplitude computed above
[Eq. (B24)]. The factor 2 comes from the fact that we add the
complex conjugate and take the real part. The factor /1 + &
comes from the W factor in Eq. (B6), whose 6 component is
1 4 i+/h. Finally, the factor /€ comes from the expansion of
6 [Eq. (B2c)]. Hence, the theoretical prediction is

o _ [seht )
"TNSR +5)

This prediction is compared to the results of numerical simu-
lations in Fig. 9; an excellent agreement is obtained.

(B26)

5. Expansion close to the exceptional point

To compare the expansion in the weakly nonlinear WW
regime with the expansion close to the exceptional point, we

— theory
® simulations

K R R S TR )

FIG. 9. Amplitude Ay of the oscillations along 6 close to the
FP-WW transition; solid line: theoretical prediction as given by
Eq. (B26); blue markers: numerical simulations.

specify our results to the case 7 — 0. We find in this limit that

o)~ o) ~ | ST TR (),

5 Y B27)

Noting that we have taken a)g = 1 here, this result matches the
one obtained from an expansion close to the exceptional point
in the small amplitude limit, Eq. (A10).

APPENDIX C: SINGLE PARTICLE IN THE DEGENERATE
CASE: THE CO REGIME IN THE SMALL FIELD LIMIT

Here, we find the linear response of the CO regime
to a small external field. Starting from Egs. (4), we lin-
earize the dynamics around the zero-field CO regime (Ry =
VT /ay, cos yp = wo/V/TL, ¢ = Qy = woV 1 — ), and in-
troduce the small quantities R(#) = Ry + SR(t), y(t) = yo +
8y, o = Qot + 8¢, h = 5h. We find

—w? 0 —IIsin
4 (°R 0 20 (or
o S | =| —@osiny 0 lon Sp
t
Sy 203 sinyy 0 0 %
0
+ Shsin(yy + Q0t)[ 0 |, (CDH
1

where the matrix on the r.h.s. not only allows to access the
stability of the CO regime, but also the linear response of this
regime to a small external field. We find that assessing the
stability reduces to the following eigenvalue problem:

A2 + re + 203 (TT — @) ] = 0, (C2)

which only has one zero solution in the §¢ direction (the phase
of the oscillation is marginally stable). We denote A = a)g -
8w3(l’[ — a)(z)) the determinant of Eq. (C2) and 6IT = IT — a)é
the distance to threshold. For §I1/ wg < 1/8, the two remain-
ing eigenvalues are reals and negatives: A = (—a)(z, +/A)/2;
and for §I1/ a)% > 1/8, they are complex conjugates with neg-
ative real parts: A = (—a)(z) + i/—A)/2. Thus, the zero-field
CO regime is stable in its whole range of existence. Intro-
ducing the complex amplitudes Ag, Ay, and A,,, we look for
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solutions of the form (SR, 8¢, 8y) = (Ag, Ay, A, )e’ . We
find the following condition:

—w(z) — i 0 —ITsin yy Ag 0
—a)(z) sin Yo —iQo 0)(2) A(p = Ah 0 s
2a)(2) sin g 0 —iQ Ay 1

(C3)

where A, = 8he'Y, and W is an irrelevant phase shift. The ma-
trix on the left-hand side of Eq. (C3) is invertible for IT > a)(z).

At lowest order in §IT =11 — a)%, the complex amplitudes
write

|AR| 1/wj
[Ag| | = |A4] 1/611 . (C4)
|AV| 1/wo/811

The complex amplitudes for the modulations along ¢ and y
diverge as one gets closer to the exceptional point, which
induces a change of regime.

[1] G. H. Koenderink, Z. Dogic, F. Nakamura, P. M. Bendix, F. C.
MacKintosh, J. H. Hartwig, T. P. Stossel, and D. A. Weitz, Proc.
Natl. Acad. Sci. USA 106, 15192 (2009).

[2] A. M. Menzel and H. Lowen, Phys. Rev. Lett. 110, 055702
(2013).

[3] L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).

[4] J. Prost, F. Jiilicher, and J.-F. Joanny, Nat. Phys. 11, 111 (2015).

[5] G. Briand and O. Dauchot, Phys. Rev. Lett. 117, 098004 (2016).

[6] G. Briand, M. Schindler, and O. Dauchot, Phys. Rev. Lett. 120,
208001 (2018).

[7] E. Giavazzi, M. Paoluzzi, M. Macchi, D. Bi, G. Scita, M. L.
Manning, R. Cerbino, and M. C. Marchetti, Soft Matter 14,
3471 (2018).

[8] P. Ronceray, C. P. Broedersz, and M. Lenz, Soft Matter 15, 331
(2019).

[9] N. Klongvessa, F. Ginot, C. Ybert, C. Cottin-Bizonne, and M.
Leocmach, Phys. Rev. Lett. 123, 248004 (2019).

[10] A. Maitra and S. Ramaswamy, Phys. Rev. Lett. 123, 238001
(2019).

[11] T. H. Tan, A. Mietke, J. Li, Y. Chen, H. Higinbotham, P. J.
Foster, S. Gokhale, J. Dunkel, and N. Fakhri, Nature (London)
607, 287 (2022).

[12] E. Zheng, M. Brandenbourger, L. Robinet, P. Schall, E. Lerner,
and C. Coulais, Phys. Rev. Lett. 130, 178202 (2023).

[13] D. Canavello, R. H. Damascena, L. R. Cabral, and C. C.
de Souza Silva, Soft Matter 20, 2310 (2024).

[14] Y. Xi, T. Marzin, R. B. Huang, T. J. Jones, and P.-T. Brun, Proc.
Natl. Acad. Sci. USA 121, e2410654121 (2024).

[15] J. Veenstra, C. Scheibner, M. Brandenbourger, J. Binysh, A.
Souslov, V. Vitelli, and C. Coulais, Nature (London) 639, 935
(2025).

[16] F. G. Woodhouse, H. Ronellenfitsch, and J. Dunkel, Phys. Rev.
Lett. 121, 178001 (2018).

[17] C. Scheibner, A. Souslov, D. Banerjee, P. Suréwka, W. T.
Irvine, and V. Vitelli, Nat. Phys. 16, 475 (2020).

[18] M. Fruchart, C. Scheibner, and V. Vitelli, Annu. Rev. Condens.
Matter Phys. 14, 471 (2023).

[19] J. Veenstra, O. Gamayun, X. Guo, A. Sarvi, C. V. Meinersen,
and C. Coulais, Nature (London) 627, 528 (2024).

[20] P. Baconnier, D. Shohat, C. H. Loépez, C. Coulais, V.
Démery, G. Diiring, and O. Dauchot, Nat. Phys. 18, 1234
(2022).

[21] N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, and
M. Sano, Phys. Rev. Lett. 76, 3870 (1996).

[22] P. Baconnier, O. Dauchot, V. Démery, G. Diiring, S. Henkes,
C. Huepe, and A. Shee, Rev. Mod. Phys. 97, 015007
(2025).

[23] H. Xu, Y. Huang, R. Zhang, and Y. Wu, Nat. Phys. 19, 46
(2023).

[24] G. Peyret, R. Mueller, J. d’Alessandro, S. Begnaud, P. Marcq,
R.-M. Mege, J. M. Yeomans, A. Doostmohammadi, and B.
Ladoux, Biophys. J. 117, 464 (2019).

[25] F. Gu, B. Guiselin, N. Bain, I. Zuriguel, and D. Bartolo, Nature
(London) 638, 112 (2025).

[26] S. Henkes, Y. Fily, and M. C. Marchetti, Phys. Rev. E 84,
040301(R) (2011).

[27] P. Baconnier, D. Shohat, and O. Dauchot, Phys. Rev. Lett. 130,
028201 (2023).

[28] C. Hernandez-Lopez, P. Baconnier, C. Coulais, O.
Dauchot, and G. Diiring, Phys. Rev. Lett. 132, 238303
(2024).

[29] E. Ferrante, A. E. Turgut, M. Dorigo, and C. Huepe, Phys. Rev.
Lett. 111, 268302 (2013).

[30] Y. Sun, B. Reid, F. Ferreira, G. Luxardi, L. Ma, K. L. Lokken, K.
Zhu, G. Xu, Y. Sun, V. Ryzhuk et al., PLoS Biol. 17, e3000044
(2019).

[31] A. S. Kennard and J. A. Theriot, Elife 9, €62386 (2020).

[32] K. Goodwin and C. M. Nelson, Dev. Cell 56, 240 (2021).

[33] S. SenGupta, C. A. Parent, and J. E. Bear, Nat. Rev. Mol. Cell
Biol. 22, 529 (2021).

[34] P. Baconnier, M. Aksil, V. Démery, and O. Dauchot, companion
paper, Phys. Rev. Lett. 135, 188302 (2025).

[35] R. H. Damascena, L. R. E. Cabral, and C. C. de Souza Silva,
Phys. Rev. E 105, 064608 (2022).

[36] S. Alexander, Phys. Rep. 296, 65 (1998).

[37] T. Lubensky, C. Kane, X. Mao, A. Souslov, and K. Sun, Rep.
Prog. Phys. 78, 073901 (2015).

[38] W. D. Heiss, J. Phys. A: Math. Theor. 45, 444016 (2012).

[39] O. Dauchot and V. Démery, Phys. Rev. Lett. 122, 068002
(2019).

[40] M. Kness, L. S. Tuckerman, and D. Barkley, Phys. Rev. A 46,
5054 (1992).

[41] P. Baconnier, V. Démery, and O. Dauchot, Phys. Rev. E 109,
024606 (2024).

[42] K.-D. N. T. Lam, M. Schindler, and O. Dauchot, J. Stat. Mech.
(2015) P10017.

[43] V. Petrolli, M. Le Goff, M. Tadrous, K. Martens, C.
Allier, O. Mandula, L. Hervé, S. Henkes, R. Sknepnek,

045505-14


https://doi.org/10.1073/pnas.0903974106
https://doi.org/10.1103/PhysRevLett.110.055702
https://doi.org/10.1038/nphys2592
https://doi.org/10.1038/nphys3224
https://doi.org/10.1103/PhysRevLett.117.098004
https://doi.org/10.1103/PhysRevLett.120.208001
https://doi.org/10.1039/C8SM00126J
https://doi.org/10.1039/C8SM00949J
https://doi.org/10.1103/PhysRevLett.123.248004
https://doi.org/10.1103/PhysRevLett.123.238001
https://doi.org/10.1038/s41586-022-04889-6
https://doi.org/10.1103/PhysRevLett.130.178202
https://doi.org/10.1039/D3SM01721D
https://doi.org/10.1073/pnas.2410654121
https://doi.org/10.1038/s41586-025-08646-3
https://doi.org/10.1103/PhysRevLett.121.178001
https://doi.org/10.1038/s41567-020-0795-y
https://doi.org/10.1146/annurev-conmatphys-040821-125506
https://doi.org/10.1038/s41586-024-07097-6
https://doi.org/10.1038/s41567-022-01704-x
https://doi.org/10.1103/PhysRevLett.76.3870
https://doi.org/10.1103/RevModPhys.97.015007
https://doi.org/10.1038/s41567-022-01836-0
https://doi.org/10.1016/j.bpj.2019.06.013
https://doi.org/10.1038/s41586-024-08514-6
https://doi.org/10.1103/PhysRevE.84.040301
https://doi.org/10.1103/PhysRevLett.130.028201
https://doi.org/10.1103/PhysRevLett.132.238303
https://doi.org/10.1103/PhysRevLett.111.268302
https://doi.org/10.1371/journal.pbio.3000044
https://doi.org/10.7554/eLife.62386
https://doi.org/10.1016/j.devcel.2020.11.025
https://doi.org/10.1038/s41580-021-00366-6
https://doi.org/10.1103/qj64-m15g
https://doi.org/10.1103/PhysRevE.105.064608
https://doi.org/10.1016/S0370-1573(97)00069-0
https://doi.org/10.1088/0034-4885/78/7/073901
https://doi.org/10.1088/1751-8113/45/44/444016
https://doi.org/10.1103/PhysRevLett.122.068002
https://doi.org/10.1103/PhysRevA.46.5054
https://doi.org/10.1103/PhysRevE.109.024606
https://doi.org/10.1088/1742-5468/2015/10/P10017

COLLECTIVE ACTUATION IN ACTIVE SOLIDS IN THE ...

PHYSICAL REVIEW E 112, 045505 (2025)

T. Boudou et al,
(2019).

[44] C. Chen, S. Liu, X.-q. Shi, H. Chaté, and Y. Wu, Nature
(London) 542, 210 (2017).

[45] S. Liu, S. Shankar, M. C. Marchetti, and Y. Wu, Nature
(London) 590, 80 (2021).

Phys. Rev. Lett. 122, 168101

[46] P. Baconnier, M. Aksil, V. Démery, and O. Dauchot, Reentrant
transition to collective actuation in active solids with a polariz-
ing field, Data set, Zenodo (2025), https://zenodo.org/records/
17256267.

[47] A. Beléndez, C. Pascual, D. Méndez, T. Beléndez, and C.
Neipp, Rev. Bras. Ensino Quim. 29, 645 (2007).

045505-15


https://doi.org/10.1103/PhysRevLett.122.168101
https://doi.org/10.1038/nature20817
https://doi.org/10.1038/s41586-020-03168-6
https://zenodo.org/records/17256267
https://doi.org/10.1590/S1806-11172007000400024

