REVIEWS OF MODERN PHYSICS, VOLUME 97, JANUARY-MARCH 2025
Self-aligning polar active matter

Paul Baconnier

Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University,
10 rue Vauquelin, 75005 Paris, France,

AMOLF, Science Park 104, Amsterdam 1098XG, The Netherlands,
and Lorentz Institute, Leiden University, Niels Bohrweg 2,

CA Leiden 2333, The Netherlands

Olivier Dauchot

Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University,
10 rue Vauquelin, 75005 Paris, France

Vincent Démery

Gulliver UMR CNRS 7083, ESPCI Paris, PSL Research University,
10 rue Vauquelin, 75005 Paris, France and Laboratoire de Physique,
Université de Lyon, Ecole Normale Supérieure de Lyon,

CNRS, Lyon 69342, France

Gustavo Diring
Instituto de Fisica, Pontificia Universidad Catdlica de Chile, 8331150 Santiago, Chile

Silke Henkes
Lorentz Institute, Leiden University, Niels Bohrweg 2, CA Leiden 2333, The Netherlands

Cristian Huepe

School of Systems Science, Beijing Normal University, Beijing, People’s Republic of China,
Northwestern Institute on Complex Systems and ESAM, Northwestern University,
Evanston, lllinois 60208, USA,

and CHuepe Labs, 2713 West Augusta Boulevard, Suite 1, Chicago, lllinois 60622, USA

Amir Shee

Northwestern Institute on Complex Systems and ESAM, Northwestern University,
Evanston, lllinois 60208, USA

® (published 20 March 2025)

Self-alignment describes the property of a polar active unit to align or antialign its orientation toward
its velocity. In contrast to mutual alignment, where the headings of multiple active units tend to
directly align with each other—as in the Vicsek model—self-alignment impacts the dynamics at the
individual level by coupling the rotation and displacements of each active unit. This enriches the
dynamics even in the absence of interactions and allows, for example, a single self-propelled particle
to orbit in a harmonic potential. At the collective level, self-alignment modifies the nature of the
transition to collective motion already in the mean-field description and can lead to other forms of
self-organization such as collective actuation in dense or solid elastic assemblies of active units. This
has significant implications for the study of dense biological systems, metamaterials, and swarm
robotics. Here a number of models are reviewed that were introduced independently to describe the
previously overlooked property of self-alignment and some of its experimental realizations are
identified. The aim of this review is threefold: (i) to underline the importance of self-alignment in
active systems, especially in the context of dense populations of active units and active solids; (ii) to
provide a unified mathematical and conceptual framework for the description of self-aligning
systems; and (iii) to discuss the common features and specific differences of the existing models of
self-alignment. The review concludes by discussing promising research avenues in which the concept
of self-alignment could play a significant role.
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I. INTRODUCTION

Active matter is a class of nonequilibrium many-body
systems that consist of individual energy-transducer compo-
nents. The collective dynamics of such active entities under-
lies phenomena on scales ranging from the molecular to the
macroscopic and includes both living and nonliving systems.
Freed from the constraints of equilibrium dynamics, these
systems exhibit a wealth of interesting large-scale behavior,
such as motility-induced phase separation (Cates and Tailleur,
2015), collective motion (Vicsek and Zafeiris, 2012), active
turbulence (Alert, Casademunt, and Joanny, 2022), collective
actuation (Baconnier et al, 2022), nonreciprocal phase
separation (Fruchart et al, 2021), and odd elasticity
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(Scheibner et al., 2020). The field of active matter focuses
on understanding how the collective behaviors of such
internally driven components can give rise to these large-
scale patterns of motion or stress.

When the active units convert energy into a motion, or
force, in the direction of a unit vector attached to and specific
to each unit—its polarity—one talks about polar active matter.
The microscopic degrees of freedom are then twofold: those
describing the position of each active unit and those describ-
ing the orientation or the polarity of its self-propulsion force.
The simplest case of polar active matter is the so-called scalar
active matter (Wittkowski ef al., 2014): the interactions among
the active units do not affect their orientation and are typically
given by the usual attraction and/or repulsion forces. Scalar
active matter is the simplest setting in which motility-induced
phase separation (MIPS) can emerge (Cates and Tailleur,
2015). In more general cases, the presence of orientational
degrees of freedom encoded in the polarity of the active units
allows for additional types of interactions such as mutual
alignment, which in turn can lead to the emergence of
collective motion or collective actuation.

The field of active matter actually came into being with the
introduction of the Vicsek model (Vicsek et al., 1995) to study
the emergence of large-scale collective dynamics in an out-of-
equilibrium system inspired by bird flocks. As Vicsek et al.
stated, “[T]he only rule of the model is that at each time step a
given particle driven with a constant absolute velocity
assumes the average direction of motion of the particles in
its neighborhood with some random perturbation added.” It is
important to realize that the Vicsek model does not specify the
origin of the mutual alignment among its agents. As such, it
must be seen as an effective model, the strength of which is to
potentially encompass a large class of systems (Vicsek and
Zafeiris, 2012) that includes schools of fish (Niwa, 1994),
herds of quadrupeds (Ginelli er al., 2015), flocks of flying
birds (Cavagna and Giardina, 2014), bacterial colonies (Zhang
et al., 2010), actin filaments (Schaller er al., 2010), vibrated
polar disks (Deseigne, Dauchot, and Chaté, 2010), and rolling
colloids (Bricard et al., 2013).

Whether of physical or social origin, the mutual alignment
of the velocity is most often seen as the consequence of
pairwise interactions that directly couple the orientational
degrees of freedom of the agents. For instance, self-propelled
rods tend to align because steric repulsion forces induce an
explicit pairwise torque on their bodies (Peruani, Deutsch, and
Bir, 2006; Ginelli et al., 2010; Peruani et al., 2011), the
conservation of momentum in inelastic collisions of spherical
self-propelled particles imposes an alignment of the velocities
(Grossman, Aranson, and Jacob, 2008), and birds are thought
to align because they try to match their neighbors’ velocities
due to “social forces.” General reviews on active systems with
mutual alignment were given by Toner, Tu, and Ramaswamy
(2005), liilicher et al. (2007), Ramaswamy (2010), Marchetti
et al. (2013), and Doostmohammadi et al. (2018).

However, this is not always the case: there are various
models of self-propelled agents that produce collective
motion and have interactions that depend on relative positions
instead of relative angles since they require no explicitly
aligning interaction. For example, collective motion can be
driven by escape-pursuit dynamics (Romanczuk, Couzin, and
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Schimansky-Geier, 2009) or by the deformation of self-
propelled soft particles with local repulsion (Menzel and
Ohta, 2012).

Finally, a different and mostly overlooked way to introduce
interactions that involve the polarity of active units is to
consider the possibility of couplings between orientations and
translations. Our particular case of interest is self-alignment,
where the orientation of each polar particle couples to its own
translational degrees of freedom, more specifically to its
velocity. Self-alignment was introduced as early as 1996 in
a pioneering work (Shimoyama et al., 1996) stemming from
the basic observation that the polar self-driven headings and
velocities of the active units do not have to be parallel. It was
only ten years later that it was reintroduced by Szabé et al.
(2006) to describe the collective migration of tissue cells.

The next decade saw the sporadic reintroduction of self-
alignment in a variety of contexts. Henkes, Fily, and Marchetti
(2011) used it to study active jamming, motivated by in vitro
experiments on confluent monolayers of migratory epithelial
and endothelial cells. It was part of a decentralized control
algorithm for a wheeled robot swarm formation implemented
by Ferrante et al. (2012) that led to a minimal model of active
elastic solids composed of self-driven agents linked by
permanent springs (Ferrante et al., 2013a). It was found to
result from the mechanical vibration of mechanically polar
disks and shown to be the key ingredient for the emergence of
collective motion in this system (Deseigne, Dauchot, and
Chaté, 2010; Weber et al., 2013).

Indeed, it was long assumed that self-alignment was a
curiosity of the single-particle dynamics that could be treated
as effective mutual alignment at the collective level. The
flocking dynamics of systems with self-alignment has
been investigated in some detail. It is not robust to
dissenters (Yllanes, Leoni, and Marchetti, 2017) and it
interacts with motility-induced phase separation (Sese-
Sansa, Pagonabarraga, and Levis, 2018) and glass formation,
as it is able to produce flocking glass phases (Paoluzzi, Levis,
and Pagonabarraga, 2024). It has also continued as a model for
flocking in confluent epithelial cell sheets with the use of
particle models (Giavazzi et al., 2017) and Voronoi vertex
models (Malinverno et al., 2017; Giavazzi et al., 2018). It has
also been proposed for the complex migration of the simple
animal Trichoplax (Bull, Prakash, and Prakash, 2021;
Davidescu et al., 2023). Only recently has self-alignment
started to attract more attention in the context of dense and
solid active matter, where it often leads to collective dynamics
that are distinct from those observed for polar mutual align-
ment. It has now been shown that novel collective effects can
emerge if the structure of the assembly remains frozen on long
timescales due to confinement or cohesion, when the system
behaves like an elastic solid rather than a viscous liquid.

In the most general sense, active solids are materials that
exhibit dynamic behavior due to internal out-of-equilibrium
processes, which causes them to undergo not only changes in
shape, size, and other physical properties but also dynamical
transitions. Here are a few examples where self-alignment has
proven to be a key ingredient for the observed dynamics. In
the context of epithelial cell sheets, self-alignment induces
collective oscillations in Voronoi vertex models (Barton et al.,
2017; Petrolli et al., 2019) and phase-field models (Peyret
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et al., 2019). In dense biofilms where the active units can be
modeled as embedded in an elastic network, it also leads to
various forms of collective oscillations (Xu ef al., 2023). In
artificially designed active elastic metamaterials, where self-
driven components are coupled through a network of
mechanical links, self-alignment leads to different forms of
collective motion and collective actuation (in which agents
perform large-scale oscillations around a reference configu-
ration) that strongly depend on the network properties
(Ferrante et al.,, 2013b; Woodhouse, Ronellenfitsch, and
Dunkel, 2018; Turgut et al., 2020; Baconnier et al., 2022;
Zheng et al, 2023). More recently, a complex interplay
between self-alignment and the active glass transition was
reported (Paoluzzi, Levis, and Pagonabarraga, 2024). Finally,
self-alignment has increasing applications for decentralized
control in the context of swarm robotics owing to its emergent
collective dynamics and the potential simplicity of its imple-
mentation (Zheng, Huepe, and Han, 2020; Ben Zion et al.,
2023). Broadly speaking, the coupling between the individual
orientational degrees of freedom and the translational ones, as
provided by self-alignment, opens the path toward the design
of spontaneous oscillating dynamics in strongly damped
systems. As such, self-alignment is a good candidate for
explaining oscillating dynamics in various living systems; it
opens the path toward the design of new smart materials
(Spillman, Sirkis, and Gardiner, 1996; Bahl et al., 2020) and
offers a new paradigm when one develops algorithms for
swarms robotics, taking advantage of simple morphological
rules (Pfeifer, 2006; Garattoni and Birattari, 2016).

The purpose of this review is to provide a unifying
overview on the various phenomena, underlying mechanisms,
emergent features, and applications related to self-alignment
in different fields of active matter. More specifically, our first
goal is to underline the importance of self-alignment, espe-
cially in the context of dense and solid active units. We
describe the mechanical origin of self-alignment and discuss
current experiments that demonstrate the role of self-align-
ment in emerging collective phenomena. Our second goal is to
provide a common mathematical framework for the descrip-
tion of self-aligning systems. Finally, reviewing the existing
models that include self-alignment, we aim at discussing their
similarities and differences in the context of this common
framework.

The review is organized as follows. In Sec. II we define the
concept of self-alignment and explain its mechanical origin.
We introduce the general forms of the equations of motion for
self-aligning polar active agents and how they simplify in
several contexts. Section III describes the experimental and
theoretical works that have analyzed the self-aligning dynam-
ics of single agents and discusses different ways in which self-
alignment can be implemented. In Sec. IV we review different
situations where self-alignment leads to collective motion in
active liquids in the absence of other sources of mutual
alignment between the agents. Section V describes various
experimental and numerical contexts in which collective
actuation has been observed in dense or solid active systems
with self-aligning dynamics. Finally, in Sec. VI we discuss
unifying perspectives that connect the different types of self-
aligning dynamics presented in this review with each other
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and with other novel forms of active dynamics that have been
introduced in the literature.

II. SELF-ALIGNMENT: A TORQUE COUPLING
ORIENTATION AND DISPLACEMENT

A. Symmetry considerations

A precise mechanical argument for the origin of self-
alignment is provided later in the review using a mechanical
walker model. We first provide an intuition of it while
following simple symmetry considerations. Suppose that
one aims at designing the most rudimentary possible self-
propelled polar agent. While the shape of its body could
remain isotropic (circular in two dimensions and spherical in
three dimensions), one would need to embed a unit vector 7
describing the tailhead axis of the agent, also called the polar
axis, along which it gains momentum due to self-propulsion;
see Fig. 1. To ensure an unbiased motion of a polar active
agent, its design, namely, the distribution of mass, but also the
spatial distribution of propulsive and dissipative forces must
respect the axial symmetry of the body so that no systematic
torque is exerted on the agent when it moves along its polar
axis. It is then clear that the same distribution of propulsive
and dissipative forces are not axially symmetric with respect
to the direction of motion, as soon as the latter is not aligned
with the polar axis. This asymmetric distribution of forces
generically exerts a torque on the agent body, which thus
rotates its polar axis toward the direction of motion or its
opposite; this is self-alignment.

For instance, the vibrated polar disks introduced by
Deseigne, Dauchot, and Chaté (2010) have two contacts with
the vibrating ground: a large piece of rubber and a thin
metallic tip. The rubber piece is responsible for most of the
friction. As soon as the disk moves in a direction that is not
aligned with its polar axis, the asymmetric friction on the
ground makes it rotate toward its direction of motion. In the
case of Hexbugs [see the top image in Fig. 2(b)] or bristlebots
(Giomi, Hawley-Weld, and Mahadevan, 2013), legs are bent
toward the front. While it is more difficult to separate the
dissipative from the propulsive elements, the aforementioned
generic symmetry argument still holds.

FIG. 1. Schematic representation of self-alignment. A particle
with a polar distribution of friction y(r), as indicated by the gray
shaded area, has an axial symmetry (the dotted line) along the
direction of its polar vector 7. For clarity, the distribution of mass
is supposed to be homogeneous, and the distribution of active
forces leading to the active force F i1 acting at the center of mass
r,, is not represented. When the velocity v = 7 is not aligned with
i1, the friction force 77, acting on the center of friction r is not
aligned with 7, leading to a self-aligning torque T,.
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As we later see, the sign of the self-aligning torque depends
on the distribution of the friction forces relative to the
distribution of mass: when the agent experiences more friction
on the back than on the front, it spontaneously aligns toward
its velocity, while it antialigns in the opposite case. It is
therefore possible to set the sign of the self-alignment by
design (Ben Zion et al., 2023).

B. Equations of motion

We now make the aforementioned argument more precise,
leaving a detailed calculation to Appendix A for clarity. We
consider an arbitrary body of volume W, held rigid by a
distribution of pairwise internal forces fi,(r) with a distri-
bution of mass 7i(r), a distribution of friction coefficient 7(r),
and a distribution of active and external forces f,,(r) and
Sex(r) acting upon it. When we introduce the center of mass
r, = (1/m) [, m(r)rdr, withm = [,,, in(r)dr, the total mass,
the center of friction rp= (1/y) [, 7(r)rdr, with y =
fw;7(r)dr, the effective friction coefficient, and J =
Jw m(r)|r —r,|*dr the angular moment of inertia, the equa-
tions of motion for this rigid body read

mi;m:Fa_}/iﬁf‘i’Fext’ (la)
JQ:Ta+y(rm_rf)Xim_yrQ+Textv (1b)

with 7y = i, + Q x (ry —r,,) and where F, = [, fo«((r)dr,
Fext = fwfexl(r)dr7 Ta = fW (r_rm) Xfacldr’ Text =
J(r =ry) X feudr, Q is the solid body rotation vector,
and y, = [),7(r)[r —r,|* is the effective rotational damping
coefficient. Note that the damping coefficients are usually
taken as scalar but can also be tensorial for nonsymmetric
shapes.

For a polar active particle whose active forces and friction
distributions are symmetric with respect to the direction of the
active force i1, T, = 0 and r,, —r; «x 1, so y(r,, —ry) = (i,
leading to the general equations of motion for an achiral polar
active particle,

mfm:Faﬁ_yff+Fextv (23)
JQ = é:ﬁ X Fyy _}/rg+ T.. <2b)

Equation (2a) describes the inertial translational motion of an
agent that is self-propelled by an active force F,ii and is
subjected to an external force F.(r). Equation (2b) demon-
strates the presence of self-alignment in the form of a torque
T, = (i x 7, that couples the orientation 72 of the self-
propulsive force to the velocity 7 of the agent. We again
stress that this self-alignment is distinct from a mutual Vicsek
alignment and is generically present for self-propelled polar
particles.

Finally, these deterministic equations can be completed
with noise. These noise terms need not satisfy Einstein’s
relation, since the agent is intrinsically out of equilibrium and
the noise can thus take its source from the driving or from the
dissipative interactions, in addition to the usual thermal bath,
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when significant. The translational noise does not need to be Ty, =i xw, (3)
isotropic either.

Historically, the equations of motion for self-aligning polar with either w = v =7 or w =¥ =7F/||. Altogether, our
agents have been introduced on a phenomenological basis in  starting point equations of motion, for the purpose of this
several forms, with a variety of simplifications and approx- review, are
imations. First, all existing studies take place in two dimen-
sions, where it = (cos 8, sin 6,0) and Q = 0%, with 2 the out- mit = F it — yi + Fo (), (4a)
of-plane direction and i = Q@ x . Second, other than the
work of Fersula, Bredeche, and Dauchot (2024), who reported
unexpected effects of the coupling between angular inertia and
self-alignment, the angular dynamics is assumed to be over-
damped (J/y, — 0) because, for all active agents considered along with their fully overdamped counterpart,
so far, the rotational damping is large because of the agent

. 1
in=pRxw)xXi+—Te X0, (4b)
4

r

shape. In practice, the translational dynamics can also be taken = ooft 4 1 Fo(r) (5a)
in the overdamped limit, but this is not always the case, as the 0 y extin >
relaxation dynamics of the velocity can be of interest too.

Beyond these standard simplifications, all existing work has B = PR x W) X i 4 — Ty X i, (5b)

assumed the equality of the velocities of the center of mass and Y,

the center of friction 7; =#,. Although this is not strictly

valid in the presence of self-alignment, it is a reasonable  With vy = F,/y. In the case with w = v, where the coupling is
assumption in the overdamped limit; see Appendix A. More  proportional to the magnitude of the velocity, # = {/y, has the
importantly, the self-aligning torque was sometimes chosento ~ dimension of an inverse length scale /7!, which we call the
be proportional to the magnitude of the velocity or to solely alignment length. In the case of w = ¥, where the coupling is
depend on its orientation. In the following we need to  independent of the magnitude of the velocity, # has the
distinguish these two formulations, which we do by writing dimension of an inverse timescale 7', which we call the

TABLE I. Self-alignment interactions as defined in the literature. The papers are grouped in two sets according to the choice of w = ¥ or
w = v and are sorted chronologically in each set. The third, fourth, and fifth columns indicate whether the self-aligning coupling is linear (L) or
nonlinear (NL), whether the damping is isotropic (¥) or anisotropic (), and whether the system is studied under confinement (Y) or not (N).
The sixth column specifies the type of “agent” or “system” considered, while the seventh column indicates the observed macroscopic phase
flocking (F) or actuation (A).

Type of phase:

Isotropic Flocking (F) and/or
Reference w L/NL damping Confinement Type of system actuation (A)
Shimoyama et al. (1996) v NL Y N Particles F
Szabé et al. (2006) 1] L Y N Particles F
Henkes, Fily, and Marchetti (2011) )] L Y Y Particles F and A
Weber et al. (2013) v NL Y N Particles F
Ferrante et al. (2013a) v NL N N Robots or structures F
Camley and Rappel (2014) v L Y YorN Particles F
Lam, Schindler, and Dauchot (2015b) v NL Y N Particles F
Barton et al. (2017) 1] NL Y Y Voronoi F and A
Giavazzi et al. (2017) v L Y N Cells or particles F
Malinverno et al. (2017) v L Y N Cells or Voronoi F
Yllanes, Leoni, and Marchetti (2017) v L Y N Particles F
Giavazzi et al. (2018) v NL Y N Voronoi F
Sese-Sansa, Pagonabarraga, and Levis (2018) v NL Y N Particles F
Petrolli et al. (2019) 1] NL Y Y Cells or Voronoi A
Dauchot and Démery (2019) v NL Y Y Single particles A
Peyret et al. (2019) v L Y Y Cells or phase fields A
Lin, Han, and Huepe (2021) v NL N N Robots or structures A
Bull, Prakash, and Prakash (2021) v NL Y N Cells or structures F
Teixeira, Fernandes, and Brunnet (2021) v L Y N Structures F
Baconnier et al. (2022) v NL Y Y Structures A
Damascena, Cabral, and de Souza Silva (2022) v NL Y Y Single particles A
Davidescu et al. (2023) v NL Y N Cells or Voronoi F
Xu et al. (2023) v NL N Y Bacteria A
Ben Zion et al. (2023) v NL N Y Robots
Paoluzzi, Levis, and Pagonabarraga (2024) v NL Y N Particles A
Baconnier, Démery, and Dauchot (2024) v NL Y Y Structures A
Herndndez-Lopez et al. (2024) v NL Y Y Structures F
Lazzari, Dauchot, and Brito (2024) v NL Y Y Structures A
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alignment time. Finally, a last variant of the angular dynamics II1. INDIVIDUAL SELF-ALIGNING AGENT DYNAMICS
consists in replacing it with a simple linear relaxation toward . . ) .
the velocity orientation y, as done by Szab6 ef al. (2006) and A Simple experiments with mechanical walkers

Henkes, Fily, and Marchetti (2011): 6 = fi(y - 6). Vibrated or vibrating mechanical walkers, which are often

We conclude 'this s'ection by ma}king the' cqnnection used in the experimental study of polar active matter
between the previously introduced achiral self-aligning polar (Deseigne, Dauchot, and Chaté, 2010; Deseigne et al

particles and the most familiar active Brownian particles, 2012; Giomi, Hawley-Weld, and Mahadevan, 2013;

whose dynamics obey the following equations: Baconnier et al., 2022; Ben Zion et al., 2023), generically
exhibit self-alignment. This can be demonstrated in a simple
experiment that imposes the translational velocity of the
walker while leaving its polarity free to reorient. If the walker
exhibits self-alignment, it will reorient along the imposed
direction of motion. Such an experiment was conducted by
. 1 Baconnier ez al. (2022) in order to extract the parameters of

i = —Te(r) + /2D, it ", (6b)  the dynamics of individual Hexbugs; see Fig. 2(a). Using a

tr simple mechanical device to drive the Hexbug along a square

trajectory while allowing it to rotate freely, Baconnier er al.

with the translational noise often neglected and the angular demonstrated for this system that w =i and that self-align-
noise distribution Gaussian and ¢ correlated. One readily sees ~ ment is controlled by an alignment length. Indeed, the angle
that the active Brownian dynamics corresponds to the fully between the polarity vector and the velocity vector decreases
overdamped dynamics in the absence of self-alignment  exponentially to zero after each change of imposed transla-

1
F= UOﬁ +;Fexl(r)’ (621)

B =0). tional direction with a characteristic time z,(V) ~ 1/V, where

Table I provides a synthetic view of the main articles where V is the imposed translational speed. This results in the
self-alignment was introduced in the literature, which cate-  measurement of an alignment length /, = Vz,(V) that in this
gorizes the variations in the equations of motion considered in case is found to be of the order of one Hexbug body length.
each case. We group them according to whether w = v or , An alternative manifestation of self-alignment can be
whether the angular dynamics is linear, and whether the observed when a constant external force is applied to the
translational damping is isotropic. polar walker. In that case the velocity relaxes toward the sum

Fronter

t 4

J
y (cm)
N
——

: 4 _7/’ \
T ' .[gsina
3D printed ﬂ“m)
exoskeletons fiy
ey - -
X . J gsiﬁd agent i agent j
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FIG. 2. Self-alignment in dynamics of single walkers. (a) When a self-aligning agent, here a Hexbug [see the top image in (b)], is
manually translated in a different direction from that of its tailhead polarity, while remaining free to reorient, its orientation relaxes
toward the direction of the imposed motion on a characteristic distance /,. Adapted from Baconnier ez al., 2022. (b) Top image: a
Hexbug with a velocity ¥ that is not necessarily aligned with its tailhead polarity 7. Bottom image: when moving on a plane inclined at
an angle a with respect to the horizontal, a Hexbug aligns in the direction of the gravity force; trajectories are color coded from blue to
red as time increases. Adapted from Baconnier, 2023. (c) A kilobot (Rubenstein, Cornejo, and Nagpal, 2014) embedded in two
morphologically distinct 3D-printed exoskeleton align either toward (bottom image) or against (top image) the direction of the gravity
force, denoting a positive and a negative value of /3, respectively; colors indicate different realizations of the trajectories. Adapted from
Ben Zion et al., 2023 with additional data. (d) Orbiting dynamics of a Hexbug in a parabolic dish; the trajectory is color coded from red
to blue as time increases. Adapted from Dauchot and Démery, 2019. (e) Bottom image: schematic representation of the active elastic
model for two interacting self-propelled agents. Each agent is represented by a gray disk with a blue “arm” projecting forward a distance
R. The sinusoidal green line represents a linear spring connecting the tips of these arms. The agent positions and centers of rotations are
given by x; and x;, while their heading polarities are indicated by the unit vectors #; and 2, respectively. . The dotted orange lines show
the position of the wheels in a potential mechanical realization with actual robots, such as the one shown in the top images. Top
images: From Zheng, Huepe, and Han, 2020. Bottom image: Adapted from Lin, Han, and Huepe, 2021.
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of the active force and the external one. Since the polarity
tends to align with the velocity, it will converge toward
aligning with the external force. Experimentally, the simplest
implementation of an external force consists in placing the
active agent on a plane inclined by a small angle a with respect
to the horizontal, thereby imposing a constant force gsina
downhill. A Hexbug placed on such a tilted plane will
therefore reorient its body downward along the slope; see
Fig. 2(b). Note that the sign of the self-aligning torque is
determined by the design of the walker’s morphology. It can
be positive, as is the case for Hexbugs, or negative, as recently
illustrated by Ben Zion et al. (2023) and Casiulis et al. (2024)
for the case of augmented Kilobots; see Fig. 2(c).

B. A self-aligning walker in a harmonic potential

The importance of self-alignment is best illustrated by
considering the dynamics of a self-aligning active particle in a
harmonic potential. This canonical problem was studied by
Dauchot and Démery (2019), who explored the dynamics of a
Hexbug in a parabolic dish antenna; see Fig. 2(d). The
deterministic dynamics of this system is described by
Eq. (4) in the w = v case with external force F.,, = —kr,
where k is the stiffness of the potential and r is the particle
position with respect to its minimum. Note that here, as in
Eq. (A4), the translational damping is assumed to be isotropic
since the effect of the external forces on the velocity is
independent of the particle orientation. A more detailed
derivation of the dynamics in both the isotropic and aniso-
tropic cases is included in Appendixes B and C, respectively.

We can rescale the dynamical equations by a characteristic
length scale I, = F,/k, the “elastic length” at which the
harmonic potential force is balanced by the active force, and
by a characteristic timescale f, = y/k. The resulting dimen-
sionless equations of motion in the noiseless case then become

T, F=R—F—r, (7a)
Tt = (A X F) X A, (7b)

with 7, = mk/y* and 7, = k/(BF,) = l,/l,. In the over-
damped case (z, = 0), Egs. (7a) and (7b) admit an infinite
set of fixed points (# = 0 and 72 = 0), where the agent sits at a
distance r = 1 from the origin, pointing radially, with r = 7.
In the presence of noise, the agent diffuses along this
continuous set of fixed points. These states, referred to as
climbing states by Dauchot and Démery (2019), are margin-
ally stable for z,, > 1 and unstable for z, < 1. For 7, < 1 the
fixed points leave place to a stable “orbiting” state, in which
the active agent rotates in the trap along a circular orbit of
radius r = /7, with tangential velocity vy = ro = /1 — 1,
where w is the angular velocity; see Fig. 2(d). The rotation is
clockwise or counterclockwise, spontaneously breaking
the chiral symmetry of the equation of motions. At the
transition from the climbing state to the orbiting state, the
amplitude of the oscillations is finite and the frequency is
zero. This corresponds to a drift-pitchfork bifurcation (Kness,
Tuckerman, and Barkley, 1992). Inertia does not affect the
stability of the climbing state, which remains marginally
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stable for 7z, > 1. Inertia also does not affect the nature of
the transition as long as 7, < 1. If we increase inertia beyond
this threshold, the stable orbiting state appears at 7, values
below 7, =7,/[2,/7, — 1] > 1. Hence, the climbing and
orbiting states coexist for 1 <7, <7, and the transition
becomes discontinuous.

In the overdamped limit, the aforementioned picture has
been extended to the case of an anisotropic harmonic trap
(Damascena, Cabral, and de Souza Silva, 2022). In this case
the fixed points still form a loop, topologically speaking, but
not a unit circle. They do not become unstable at the same
level of activity: the fixed points in the stiffest parts of the trap
destabilize first, and those in the shallowest parts destabilize
last. The dynamical regimes are also more complex: instead of
circles, the particle follows an oval for a weakly asymmetric
potential, which deforms to a lemniscate and then to higher-
order lemniscates upon increasing the asymmetry. There are
two interesting limiting cases. When the soft direction
becomes flat, the active unit polarizes in this direction and
starts unbounded motion. When the hard direction becomes
infinitely rigid, the orbiting state does not exist. It was also
shown that, in the last case, the angular noise can still
restore pseudoperiodic dynamics (Baconnier, Démery, and
Dauchot, 2024).

Finally, we note that the case of antialigning active particles
in a harmonic potential was reported by Ben Zion et al.
(2023). In this case the climbing state becomes uncondition-
ally stable and no orbiting solution emerges, leading to
clustering on large scales (Casiulis et al., 2024).

C. Other realizations of self-alignment

1. Off-centered mechanical forces

A specific type of mechanical interaction that can lead to
dynamics equivalent to self-alignment was considered by Lin,
Han, and Huepe (2021). In this case, each active agent is
subject to off-centered forces applied on a point r + Rit at the
end of a lever arm of length R that projects forward from the
center of rotation r; see Fig. 2(e). These forces will introduce a
mechanical torque equal to

Ty = Ri x Fexl(r + Rﬁ) (8)

The corresponding Newton’s equations for these agents are
thus equivalent to those in Eq. (2), but by replacing the self-
aligning torque T, with T.,. Note, however, that now the
forces are not computed only as a function of particle
positions; they will also depend on their orientations since
the argument of F,, includes 72. This is because the interaction
forces now depend on the distance from lever arm to lever
arm, rather than from center of rotation to center of rotation.

Lin, Han, and Huepe (2021) and Lin ez al. (2023) showed
that this dependency of F.,, on Rit results in several effects
that are not found in self-aligning dynamics. For example, it
allows the interaction to be set as based mainly on mutual
alignment, for large R, or on self-alignment, for small R. It
also results in states of quenched disorder that cannot form in
self-aligning systems.
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In a case with overdamped dynamics and isotropic transla-
tional damping, Eq. (6) becomes i=wvyit+ (1/y)F oy (r+ Rit).
This can be inserted into Eq. (8) to obtain an expression for
the torque akin to the self-alignment torque 7', in Eq. (3) for the
w =i case if we define { = yR. In the limit of small R, the
resulting dynamics will then become identical to self-alignment.
However, if the translational damping is anisotropic, this
equivalence breaks down since the expression corresponding
to Eq. (6) will be yi- = F it + F o (r + Rit), where y remains a
tensor. In the limiting case with infinite translational damping
along 7, where no lateral displacements are allowed (as in the
models of wheeled agents reviewed in Sec. IV.E), this difference
is crucial because 72 x w = 0 and the self-alignment torque in
Eq. (5b) would vanish. By contrast, even in this limit, models
based on off-centered forces will produce angular dynamics that
resemble self-alignment since T, will not vanish.

2. Microswimmers

Another potential realization of self-alignment dynamics
can be found in microswimmers, which are typically defined
as micron-sized self-propelled entities in suspension in a
solvent. These take their momentum from the surrounding
fluid while conserving the total momentum. In such a
situation, one may wonder whether the coupling of the
translational and rotational degrees of freedom, which gives
rise to self-alignment, will subsist. This question was already
raised for the simplest case of asymmetrically patterned
catalytic colloids, also called Janus colloids, in the seminal
work by Anderson (1989).

Catalytic Janus colloids produce rapid motion in fluids by
decomposing fuel asymmetrically around their body and
taking advantage of the resulting gradients to develop motion
through the corresponding phoretic flows. In principle, the
asymmetric patterning of the colloidal particle can lead to a
differential drag that produces a torque when the motion of the
particle is not aligned with the polar axis of symmetry of the
Janus pattern.

Considering a “slip-stick” spherical particle whose surface
is partitioned into slip and no-slip regions, the coupling
between torque and translation, as well as between force
and rotation, can be obtained in the form of a Faxén-type
formula in the limit where the slip length is small compared to
the size of the particle (Swan and Khair, 2008; Premlata and
Wei, 2021). This coupling, which is uncharacteristic of
spherical particles in unbounded Stokes flow, originates
purely from the slip-stick asymmetry and generically produces
self-alignment. It is, however, likely that the difference of slip
length between the two sides of a real Janus microswimmer is
so small that in practice the coupling coefficient is also small.
Nevertheless, the alignment with external forces was recently
used to explain the chiral motion observed in light-activated
Janus colloids (spherical silica particles half coated with
carbon) that are moving in a viscoelastic fluid (Narinder,
Bechinger, and Gomez-Solano, 2018). Finally, we mention
that in some cases more complex interactions, including
mutual torques such as the one produced between charge-
induced dipole Janus colloids (Zhang et al., 2021; Das et al.,
2024), could possibly map onto an effective self-aligning
dynamics, thereby producing flocking or cluster phases.
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3. Migrating cells

There is experimental evidence that epithelial-type cells on
a substrate exhibit self-alignment properties at the collective
level. Specifically, two of the main signatures of self-align-
ment, self-organized flocking in open boundary conditions
(Szabé et al., 2006; Malinverno et al., 2017) and oscillations
in confinement (Deforet et al., 2014; Petrolli et al., 2019;
Peyret et al., 2019), have been observed in epithelial cell
sheets. An explicit biological role for self-alignment in the
complex migration and deformation behavior of the simple
sheetlike animal Trichoplax was also recently suggested (Bull,
Prakash, and Prakash, 2021; Davidescu et al., 2023).

Unlike in the case of mechanical agents, studying the active
mechanics of cells in isolation is difficult, and emergent
dynamical equations are only beginning to be proposed
(Briickner et al., 2022). There is, however, consensus that,
at the single-cell level, a process called contact inhibition of
locomotion (Abercrombie and Heaysman, 1954; Smeets et al.,
2016; Stramer and Mayor, 2017) slows and reorients cells
when they encounter an obstacle. In fact, self-alignment with
w = ¥, in the linearized version, has been proposed as such a
mechanism and explored explicitly in a 1D confining geom-
etry (Camley and Rappel, 2014). In such a situation, the
problem easily maps onto an effective equilibrium dynamics
where the cell reverts polarization stochastically according to
an Ahrrenius-like process. Camley and Rappel extended their
analysis to the case of multiple cells and showed that the
increase in persistence time of a strongly confined cell and the
interactions driving collective cell motility are intimately
related to the self-aligning dynamics.

Single-cell dynamics is, however, of limited use to cells’
function in a tissue due to their transitioning from a mesen-
chymal migratory state [for example, the keratocytes dis-
cussed by Szabé et al. (2006)] to an densely packed epithelial
state with a much different morphology. The latter is domi-
nated by strong cell-cell junctions that incorporate both
attractive-repulsive forces and active forces between cells,
in addition to the individual active migration over the substrate
(Alert and Trepat, 2020). Cell polarization as an internal state
(called planar cell polarization in the biology community) is
then variously defined as cell elongation, cell migration
direction, actomyosin cortex polarization, or an anisotropy
in chemical expression, with unclear distinctions among them
(Ladoux and Mege, 2017). A number of competing feedback
mechanisms related to activity that it is imperative to disen-
tangle have been identified in cells. Separately, the plithotaxis
mechanism (Tambe et al., 2011) makes cells migrate along the
direction of principal stress.

In the active matter community, hydrodynamic theories
such as the active gel theory (Jiilicher, Grill, and Salbreux,
2018) integrate this internal state information into a polari-
zation vector, which in active nematics corresponds to the
nematic orientation tensor (Doostmohammadi er al., 2018),
while motion is due to gradients in the stresses generated by
the polarization. The hallmark of active nematic states are the
appearance of motile +1/2 topological defects, which have
been observed on average in epithelial cell sheets (Saw ez al.,
2017). However, the connection between these stress gra-
dients and the individual migration and feedback mechanisms

015007-8



Paul Baconnier et al.: Self-aligning polar active matter

is unclear. Models that include nematic activity such as phase-
field models (Doostmohammadi, Thampi, and Yeomans,
2016) and, more recently, vertex models (Rozman,
Yeomans, and Sknepnek, 2023) have therefore been devel-
oped. Alternatively, such defect generation can also emerge
from the interplay between nonaligning self-propulsion and
deformability (Killeen, Bertrand, and Lee, 2022; Chiang et al.,
2024) and the observed mesoscopic “swirly” glasslike corre-
lations in cell sheets (Angelini et al, 2011) can also be
understood in an active solid framework without any align-
ment (Henkes et al., 2020).

Capturing these types of feedback has led to several
computational cell models that include self-alignment, where
cells are represented by network connections (Bull, Prakash,
and Prakash, 2021; Davidescu et al., 2023), particles (Szab6
et al., 2006; Smeets et al., 2016), vertex models (Barton ef al.,
2017; Malinverno et al., 2017; Giavazzi et al., 2018; Petrolli
et al., 2019), or phase-field models (Peyret et al., 2019;
Monfared et al., 2023). We note that, given the strongly
nonlinear internal dynamics of cells in response to external
mechanical perturbations, the normalized w = ¥ velocity
coupling has generally been used in these models.

IV. COLLECTIVE MOTION OF SELF-ALIGNING AGENTS

Collective motion is the hallmark of mutually aligning
active agents. Yet, as discussed in the Introduction, collective
motion does not arise only because of mutual alignment
between the velocities of agents. In this context self-alignment
models form a class of their own, with a distinct coupling
between the translational and orientational degrees of freedom
at the level of a single particle. We nevertheless later see that it
also leads to collective motion under various circumstances.

A. Liquids of self-aligning agents

To our knowledge, the first work where self-alignment was
introduced dates back to the early years of active matter
(Shimoyama et al., 1996). It was introduced in a model
specifically designed to describe collective motion. The
central ingredient of the model is to take into account the
heading unit vector 72 and realize that in a glide, the heading
and the velocity vector need not be parallel. The authors
therefore assume that the heading relaxes to the direction of
the velocity in a finite time. The dynamics of agent i was
hence described by the following noiseless equations,

mF; :Faﬁi_}’i'i+zaijfij+giv (9a)
P

Tai}li = (flt X f],) X ﬁ[v (9b)

corresponding to Eq. (4), in the case with w = ¥ and an
isotropic translational damping. The forces acting on the
particles are the pairwise interaction forces a;;f;;, which in
this case are not necessarily isotropic, and a global cohesive
force g;. The interaction forces and this global cohesive force
share the same amplitude c.

After rescaling the length by the interaction range r. and the
time by 7, = r./v,, where v, = F,/y is the steady-state active
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speed of a free agent, Shimoyama et al. (1996) introduced
three dimensionless parameters: P=yr,/t,F,, R=mF ,/y*r,,
and Q = F,/c. Here P is the ratio between the interaction
time r.y/F, and the alignment time 7, of the orientation, R is
the inertia to damping ratio, and Q is the active-force-to-
interaction-force ratio. Shimoyama et al. considered the
overdamped regime where R < 1 and reported a transition
from disordered dynamics to collective motion controlled by
the ratio G = P/Q: at large G the dynamics are chaotic
and analogous to the swarming of mosquitos; at small G
the dynamics are highly polarized and analogous to the
marching of cranes. In the transitional regime, the collective
motion is wandering, in a way akin to the motion of sparrows;
see Fig. 3(a). The influence of noise is not reported.

Ten years passed before a similar model including self-
alignment was introduced by Szabé et al. (2006) to describe
the collective migration of tissue cells. They modeled an ith
cell by a disk-shaped particle whose position r; and orientation
it; = (cos 6;, sin ;) evolve in a 2D plane following the over-
damped equation of motion

N
i‘izvoﬁi+a E Fij’
J=1

(10a)

. 1
0; = —sin™'[(A; x b;) - 2] +
T(l

2D9’7i’ ( 10b)

where ¢, is a unit vector orthogonal to the plane of motion and
n; is a random variable that introduces J-correlated Gaussian
white noise with zero mean, i.e., with (7;(#)) =0 and
(ni(t)n;(¢')) = 6,;6(t — t'). Equation (10a) is the overdamped
version of Eq. (2), with v, = F,/y. The interaction forces are
short-range and contain a repulsive part, an attractive part, and
an adhesive part; see Szabd et al. (2006) for an exact
expression. Equation (10b) can be recast in a simpler form as

. 1
0, = T_('//i —0;) +/2Dgn;, (11)

a

where y; denotes the orientation of the velocity, ¥; =
(cosy;, siny;). It thus amounts to a linearization of the
overdamped version of Eq. (5b) in the w = ¥ case.

In contrast to the model proposed by Shimoyama et al., this
model incorporates angular noise but does not include long-
range global forces. The resulting dynamics exhibit a con-
tinuous transition from a disordered to an ordered state, which
can be achieved by reducing noise or increasing density; see
Fig. 3(b). The model was also used to examine the impact of
confinement, revealing the emergence of circular motion
across a wide range of parameters, which is consistent with
experimental observations of cellular behavior.

Self-alignment was first experimentally identified when it
was found to be the root cause of the onset of the collective
motion observed in a system of vibrated polar disks
(Deseigne, Dauchot, and Chaté, 2010; Deseigne et al.,
2012). In this setup millimeter-sized objects were designed
to be self-propelled agents that advance along a well-defined
axis when placed on a vibrating surface while remaining disk
shaped with respect to collisions and thus interacting with
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FIG. 3. Collective motion in self-aligning liquids. (a) Early
simulations in the first model of self-aligning agents. Adapted
from Shimoyama et al., 1996. (b) Simulations in a large
population of self-propelled self-aligning cells, modeled as
disk-shaped particles. Adapted from Szabd et al., 2006. (c) Ex-
perimental evidence of collective motion in a system of vibrated
polar disk-shaped grains. The particles’ colors indicate the degree
of local alignment between particles: perfect alignment, red and
perfect antialignment, blue. The intrinsic polarity of the particles
is indicated by the black arrows. Adapted from Deseigne,
Dauchot, and Chaté, 2010.

neighbors through central, isotropic forces; see Fig. 3(c).
Weber et al. (2013) developed a faithful model for the motion,
collisions, and self-alignment of such polar disks in order to
extend their experimental observations to larger in silico
systems. The model that they introduced reads

m¥; = F i =i+ Y _fij + b+t
J#

(12a)

¢; = psign[cos(y; — 0;)] sin(y; — 0;), (12b)
with a self-alignment of 71 toward ». The agents interact via
inelastic collisions encoded in the pairwise forces fij. The
damping is isotropic but the “active noise” is anisotropic,
respecting the particle’s polar symmetry: the random variables
ny'L follow a Gaussian distributed white noise with zero mean,

ie. (n (1)) = 2Dy 15,6),6(t—1'), where Dy is
the corresponding diffusion constant. There is no noise on the
angular dynamics. One interesting specificity of this model is
that the sign of the coupling changes according to
a; = L(v;, ;) = 0; —y,;, the angle between velocity and
polarity. For |a;] > /2 it was assumed that frictional inter-
actions with the vibrating plate would rotate #2; toward v;,
producing self-alignment, while for |a;| > 7/2 it was assumed
that i2; would instead rotate toward —wv;. To our knowledge,
this is one of only two examples in the literature where what
could be called a nematic self-alignment was introduced. The
other one, in the nematic flocks on spheres of Henkes,
Marchetti, and Sknepnek (2018), supplements more tradi-
tional nematic pair alignment, and is necessary to produce the
torques that generate +1/2 defects.

By calibrating the model parameters using experimental
data from the single-particle dynamics and collision statistics,
Henkes, Marchetti, and Sknepnek were able to obtain quan-
titative agreement between the experiments and the model also
at the collective level. From there they could show firm
numerical proof of the transition to collective motion in this
system. Note that a simpler form of self-alignment of 71 toward
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v, regardless of a;, also promotes the transition to collective
motion, as later demonstrated by Lam, Schindler, and Dauchot
(2015a) and Lam, Schindler, and Dauchot (2015b). Given the
isotropic pairwise interactions of the disks, this result under-
lines the notion that collective motion can emerge from self-
alignment alone. It is thus tempting to think of self-alignment
as one specific microscopic mechanism (among others) that
can lead to a form of effective pairwise mutual alignment,
which would thereby belong to the class of active matter
systems described by the Vicsek model (Vicsek et al., 1995).

However, the situation is not that simple, as demonstrated
by Lam, Schindler, and Dauchot (2015a, 2015b), where the
Landau terms of the large-scale hydrodynamics were derived
for a system of self-propelled hard disks obeying self-align-
ment in the w = v case. They adopted the same units and
timescales as Shimoyama et al. (1996), with r, the diameter of
the hard disks, and wrote the dimensionless equation of
motion as

‘T’Lerl—i‘+Zfij, (13a)
J#i
Tt = (A X F) X ft + /2D nit*, (13b)

with 7, =mF,/y*r, and %, = 1/pr. =1,/r.. When two
particles obeying the aforementioned dynamics collide, even
elastically, the polarities of the particles and their respective
velocities strongly misalign. This leads to a relaxation process
during which the polarity and the velocity rotate toward each
other until v; = #;. Each collision followed by this relaxation
process was named a scattering event. For symmetric colli-
sions it is easy to see that such scattering events will induce an
alignment of the velocities of the two particles.

Using these equations and integrating over all possible
pairwise events, Lam, Schindler, and Dauchot (2015a, 2015b)
computed the effective total pairwise alignment strength as a
function of the incoming angle of the collisions and thereby
obtained the mean-field phase diagram of the model in the
low-density limit; see Fig. 4(a). In the absence of noise, a
strongly discontinuous transition from the disordered state to a
highly polar liquid, or the flocking state, takes place when the
ratio @ = 7,,/%, exceeds a critical value a*(p) that decreases
with the density p. If we add noise, the transition shifts to
higher values of a and, for large enough noise, it becomes
continuous. For a finite value of the noise, there is a reentrant
transition toward the disordered state when a becomes too
large. This can be understood intuitively as follows. When a is
small, the relaxation of the polarization toward the velocity is
so fast that self-alignment does not affect the orientation of the
velocity and the liquid remains disordered. When « is too
large, the persistence of 72 is so large that it is not influenced by
the collisions with other agents; mutual alignment cannot set
in and the liquid remains disordered. The phase diagram
displayed on Fig. 4(a) is obtained in the limit of large 7,.
When 7, is decreased, the left boundary of the flocking region
remains unchanged, while the right one shifts toward larger a.

An important point made by Lam, Schindler, and Dauchot
(2015a, 2015b) is that the dependence of the effective align-
ment strength on the incoming angle of the collision is
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markedly different from the one obtained from the Vicsek
aligning rules. A qualitative consequence of this difference is
that the mean-field transition to collective motion is second
order in the case of the Vicsek model, while we saw that its
order depends on the amplitude of the noise in the case of self-
aligning hard disks. Whether this qualitative difference
observed at the mean-field level has significant impact on
the transition with spatial fluctuations remains an open issue
that is notoriously difficult to address because the nucleation
process leading to collective motion takes place at a bimodal
line far away from the spinodal line.

Except for the presence of cohesion discussed by
Shimoyama et al. (1996), the deterministic dynamics intro-
duced in this review and by Lam, Schindler, and Dauchot
(2015b) are essentially the same. Their results are comple-
mentary in the sense that they explore two different limits.
Indeed, if we compare Egs. (9) and (13), we see that 7, = R
and 7, = P~'. While Shimoyama et al. (1996) considered the
overdamped limit R — 0, Lam, Schindler, and Dauchot
(2015b) studied the hard disk limit Q — 0. Together they

established that, in the absence of noise, the mean-
field transition to collective motion takes place for
7, > 1:(7,, Q), with
#(1, > 0,0)~ 07!, (14a)
7 (7,,0 = 0) ~ 7,. (14b)

Most models of self-propelled particles are considered in
the overdamped limit (7, — 0) Softer potential than the
strictly hard disk interaction discussed by Lam, Schindler,
and Dauchot (2015b) is then also studied. For such over-
damped models, we have v; = f; and no self-aligning term at
all times, except for the duration 7; of the interaction, during
which the self-alignment will reorient the w; velocities.
According to the analysis of Lam, Schindler, and Dauchot
(2015a), what matters is the persistence of the polarization
throughout the scattering event. It is thus the ratio 7, /z; that
plays the role of the aforementioned parameter a. The
transition reported by Szabd er al. (2006) is mean-field-like
because of the small system size that are considered. Its
continuous nature can thus be understood, in light of the
earlier discussion, as a transition taking place for large
enough 7,/z;.

When the density becomes so large that crowding effects
become significant, equilibrium liquids experience a strong
increase of their viscosity, eventually reaching the glass
transition when crystallization is avoided. The interplay of
activity and glassiness has attracted significant attention
(Janssen, 2019). However, most studies have not considered
the presence of alignment, and even less so the presence of
self-alignment, except for the recent work of Paoluzzi, Levis,
and Pagonabarraga (2024), who studied a polydisperse system
of particles with self-aligning dynamics described by
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FIG. 4. Phasediagrams for collective motion in liquids composed
of self-aligning particles. (a) Diagram obtained numerically (blue
and red data points) from the simulations of Egs. (13a) and (13b)
with density p = 102 and analytically in the limit of low densities
and 7, — oo (black line). The blue (red) data points denote the
location of the transition when « is increased (decreased). For o >
a, the two datasets merge and the transition is continuous; for
a < a, it is discontinuous. D /A denotes the ratio of the angular
noise amplitude to the collision rate and a = 7, /7,. Adapted from
Lam, Schindler, and Dauchot, 2015b. (b) Diagram obtained
numerically from the simulations of Egs. (10a) and (10b). At large
packing fractions (red markers), the transition is continuous; at
small packing fraction (blue markers), it is discontinuous. Adapted
from Paoluzzi, Levis, and Pagonabarraga, 2024.

where y; is the direction of ¥;. The dynamics in this case is
overdamped, as in the work of Szabé et al. (2006), but the self-
aligning term is not linearized in y; — 6;.

Szab6 et al. reported that a transition to collective motion
takes place when S exceeds a density dependent threshold
B*(¢). Within the limit of their finite-size simulations, they
observe that the transition is first order at moderate values of
¢, while it becomes second order for large ¢ [Fig. 4(b)] and
remains second order when the system size is increased.

For smaller self-alignment Szabé et al. (2006) observed the
well-known MIPS, which takes place at large enough den-
sities in systems of nonaligning repulsive active Brownian
particles (Cates and Tailleur, 2015). This transition appears to
be mutually exclusive with the transition to collective motion.
At higher densities the system instead reaches a glassy state
where the relative motion of particles ceases. Nevertheless, the
flocking transition is not suppressed in this regime, and Szabd
et al. distinguished “glassy” from “flocking glass” states.

B. Collective motion in a confining potential

Recently, the collective dynamics of self-aligning polar
active matter, interacting repulsively through a truncated
Lennard-Jones potential and confined in a harmonic potential,
were investigated numerically by Canavello et al. (2024). In
their work the particles obey the overdamped dynamics
described by Eq. (5) in the case with w = v.

The main output of their work was a phase diagram and a
description of the dynamical phases, as summarized in Fig. 5.
In the small § and large noise D region, all polar order
parameters vanish, which characterizes the unpolarized or
paramagnetic state. Decreasing D while maintaining a small /3,

i = voh; + uF, (15a) here typically smaller than 1, the dynamics enters the radially
' ' a polarized (RP) state displayed in Fig. 5(a), where all particles
. ) point outward. Increasing  while keeping D small, the system
0 = psin(y; = 6;) + /2Dy, (15b) organizes into a vortex state, first in a shear banded vortex
Rev. Mod. Phys., Vol. 97, No. 1, January—March 2025 015007-11
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FIG. 5. Collective motion in a harmonic potential. The main
dynamical states observed, when varying the self-aligning strength
f and the rotational noise D, are displayed with the color coding for
the orientation of the particle. (a) Radially polarized (RP) state.
(b) Shear banded vortex (SBV) state. (c) Uniform vortex (UV)
state. (d) Orbiting ferromagnetic (FM) state. (¢) Multiorbiting
polar cluster state observed at lower packing fraction. (f) Phase
diagram in the -D plane. Inset: enlargement of the small 3, small
D region. The gray intensity shows the time-averaged radial
polarization (P,). Adapted from Canavello et al., 2024.

(SBV) state shown in Fig. 5(b), which rapidly turns into the
uniform vortex (UV) state in Fig. 5(c) for large enough f. This
uniform vortex does not rotate as a strict rigid body but rather
as a deformable solid. Increasing f at large noise, the system
adopts a ferromagnetic (FM) state where a polarized cluster
revolves without rotation; see Fig. 5(d). When the packing
fraction is low, this unique cluster may break into several
smaller clusters; see Fig. 5(e).

Canavello et al. (2024) also reported that the orbiting
ferromagnetic phase is highly resilient to noise, as it is stable
even at high values of D, especially for high angular mobility,
while the uniform vortex phase is typically much more
sensitive to fluctuations. As shown in the phase diagram
[Fig. 5(f)], the uniform vortex and the ferromagnetic states
coexist for low enough noise. As a result, the transition from
the uniform vortex state to the ferromagnetic one and back
exhibits a pronounced hysteretic behavior.

C. Collective motion in active Voronoi models

Epithelial cell sheets are confluent monolayers of active
cells where individual cells interact both with a substrate and
with other cells in an arrangement that resembles cobblestone
pavement; see Fig. 6(a). To model this geometry, the vertex
model of epithelial cell sheets (Nagai and Honda, 2001;
Farhadifar et al., 2007) maps them to a planar polygonal tiling
in which cell shapes were initially determined by energy
minimization as in foam models; see Fletcher ef al. (2014) for
a review. In the now consensus energy functional

Viertex = Z

i=1

r

A; —Ap)?
(1 0) +2

(P; — Py)?, (16)

=

the shape of each cell is constrained by an area stiffness « that
constrains fluctuations away from a target area A, and a
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FIG. 6. Epithelial tissues and active Voronoi models. (a) Human
mammary epithelial cells treated with RAB5A-MCF-10A and
inducing flocking motion. The velocity field is obtained from
particle image velocimetry (PIV). The red arrow in the inset is the
mean velocity v, (averaged over the entire field of view). The
color map reflects the alignment with respect to the mean velocity
as quantified by the alignment index. Adapted from Malinverno
et al., 2017. (b) Alignment-shaped index phase diagram as
obtained from a self-propelled Voronoi model with self-align-
ment. The native SPV model corresponds to the horizontal axis,
with f = 0. Adapted from Giavazzi et al., 2018.

perimeter stiffness I" that likewise constrains perimeter fluc-
tuations. This energy is expressed as a function of the vertex
positions r, of the cell polygonal shapes.

To make the previous model active, Bi er al. (2016)
incorporated cell crawling motility over a substrate by
introducing overdamped Langevin dynamics akin to active
Brownian motion,

Fp = UOﬁi - avivvertexv
9[ \/ 2D9’7i'

While this dynamics is conceptually straightforward, the
presence of the gradient with respect to the cell center positions
r; requires a one-to-one continuously differentiable map
between these and the vertex positions r,. This can be solved
using the dual between a Delaunay triangulation among cell
centers and a Voronoi tiling for the vertex positions, which led
to the adoption of the name self-propelled Voronoi (SPV)
model. The SPV model admits two phase transitions between a
rigid solid state and a liquid state [Fig. 6(b): one when cell
motility v, becomes large enough and the other when cells have
a more elongated shape, as quantified by the shape index
Po = v/Po/Ag. This index measures the preferred perimeter
relative to the preferred area, with the system being liquid (for
vo = 0) if py is above a critical p; ~ 3.81 (Park ef al., 2015).

The native SPV model can be enriched with self-alignment
in the form of an explicit alignment torque (Barton ef al.,
2017),

= UOﬁi - avivvenex’ (17)

7,0; = 7 -2 + \/2Dgn;, 7 =J,(A; x ¥;) x Ay, (18)
where Z is the out-of-plane unit vector. This model produces a
flocking state at sufficiently strong alignment = J,/y,. It
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was used to investigate the flocking transition in cell sheets by
Malinverno et al. (2017) and Giavazzi et al. (2018).

More specifically, Malinverno et al. (2017) developed an
experimental system of human mammary epithelial cells. In its
natural state, this cell sheet acts as a liquid with spatiotempor-
ally correlated motion, but without global flocking. Treating it
with RAB5SA-MCF-10A, which weakens the intercellular
adhesive bonds, has been empirically shown to induce a
transition to flocking motion in the sheet; see Fig. 6(a).
Including velocity self-alignment, as previously introduced
for the dynamics, recovers this transition, now as a function of
J,. Separately, Giavazzi et al. (2018) mapped the full phase
space of this model as a function of the shape parameter p, and
the alignment strength f = J,/y, for constant active driving
and rotational noise; see Fig. 6(b). As in the particle-based case,
this model admits both a solid-to-liquid transition and a
flocking transition, including a solid flocking phase. The
precise nature of these transitions and of the flocking phase
have not yet been explored in detail.

D. Collective motion in a crystal of self-aligning disks

If we consider high densities, the kinetic theory calculation
that demonstrates the emergence of collective motion in a
dilute assembly of self-aligning hard disks is not supposed to
hold (Lam, Schindler, and Dauchot, 2015a). This is all the
more true when the time separating two collisions becomes
shorter than the relaxation times of the polarity and velocity.
One would thus expect collective motion to be preempted by
crowding effects at large densities. Surprisingly, this is not the
case, as demonstrated by Briand and Dauchot (2016) and
Briand, Schindler, and Dauchot (2018), who investigated both
experimentally and numerically dense assemblies of mono-
disperse self-aligning hard disks. They found two emerging
effects of the active self-aligning dynamics.

First, the crystallization transition obeys a scenario that is
radically different from the equilibrium case. The transition
toward the crystal phase is marked by the emergence of close-
packed crystallites, which coexist with a surrounding moving
fluid. Increasing the density, the crystallites merge into a large
hexatic phase populated with strongly dynamical defects,
leading to a complete decoupling of the dynamics and the
structure. While the structure is dominated by that of a close-
packed crystal, the mean-square displacement exhibits no
plateau and remains superdiffusive on long timescales. There
is no truly slow dynamical regime, and all particles rearrange
their position with respect to their neighbors on a modest
timescale.

Second, and more surprisingly, the authorsBriand and
Dauchot (2016) and Briand, Schindler, and Dauchot (2018)
reported the existence of a flowing crystalline phase. After a
long transient, a perfect crystalline lattice with initially
random orientation of the polarities starts moving as a whole
with all particles aligned in the same direction: despite the
high-frequency collisions, self-alignment still produces col-
lective motion. When the crystal is prepared in a hexagonal
arena that respects the same crystalline symmetry, the entire
system spontaneously forms a macroscopic sheared flow
while conserving an overall crystalline structure; see Fig. 7.
This flowing crystalline structure, which was called a
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FIG. 7. Collective motion in a crystal of self-aligning disks.
(a) Image of a dense packing of self-propelled vibrated disks
(packing fraction ¢ = 0.86) confined in a hexagonal arena that
forms a self-flowing crystal, with shear localization along default
lines emerging from the corner of the hexagon and merging in its
center. Adapted from Briand, Schindler, and Dauchot, 2018.
(b) Simulation of the same system at low noise and even higher
packing fraction (¢ = 0.88), which produces the same phenom-
enology with an even higher level of order in both space and time.
Adapted from Briand, Schindler, and Dauchot, 2018.

rheocrystal, is made possible by the condensation of shear
along localized stacking faults. In the presence of noise, the
core of the system concentrates the defects and remains
disordered; see Fig. 7(a). Note the strong similarities between
this flowing crystal and the uniform vortex state reported in
Fig. 5(c). Performing simulations for larger system sizes, with
an experimentally realistic packing fraction and noise level,
the disordered core was observed to occupy a smaller fraction
of the system, while the flowing velocity slowly converged to
a higher value. Numerically, it is also possible to reduce the
noise and increase the packing fraction to a point where the
structure is defect-free in the core and the dynamics eventually
becomes periodic in time; see Fig. 7(b). The highest packing
fraction for which the crystal flows is controlled by the
fraction of space needed for the stacking faults to take place.
Since the latter is subextensive, the flowing crystal phase
range enlarges with increasing system size.

E. Collective motion of active elastic sheets

Motivated by experiments performed with wheeled robots
(Ferrante et al., 2012; Brambilla et al., 2013) Ferrante et al.
(2013a, 2013b) introduced an active elastic sheet model to
describe groups of self-propelled agents moving on an arena
while linked by linear springlike attraction-repulsion inter-
actions. These agents obey the following overdamped equa-
tions of motion:

iy = volt; + ay[(F; + D) - alh;, (19a)

0; = Pol(Fi + D:&;) - ] + Dyn;. (19b)
Noise was introduced in the headings and in the virtual
interaction forces (corresponding to actuation and sensing
noise in the context of robotics) by adding the random variables
n; (a o-correlated scalar with zero mean Gaussian white noise
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distribution, as previously discussed) and éf (a S-correlated
randomly oriented unit vector), with amplitudes D, and D,,
respectively. The total forces over agent i are evaluated as
Fi =73 ics (=k/Lij)(Iri;| = Lij)rij/Irij|, where k/l;; is the
spring constant, r;; = r; — r;, and /;; is the equilibrium distance
between the interacting agents i and j. Note that the interactions
are permanent in this setting, so the interaction network
remains unchanged throughout the dynamics. By connecting
nearest neighbors on a plane, we thus define a structure that can
be viewed as an active elastic sheet.

A unique feature of this model is that the mobility tensor
a = y~! is fully anisotropic, with zero mobility along 7;- and
a mobility along A;. It thus describes agents that cannot
translate in the ﬁiL direction, because this would correspond to
the wheeled robots sliding sideways. Correspondingly, as
described in Sec. III.C.1, the angular dynamics does not result
strictly from self-alignment and is instead equivalent to
torques introduced by off-centered elastic forces, where Sy
results from the combined effect of the lever arm and the
rotational mobility. Note, however, that this equivalence is not
complete, since the forces F; in this model are computed from
center to center, an artifact introduced to avoid the need for
sensing other robots’ headings.

An elastic sheet of linked nearest neighbors following these
dynamics self-organizes into a polarized state with common
headings despite having no explicit alignment forces (Ferrante
et al., 2013b). A numerical finite-size scaling analysis also
showed long-range order at nonzero noise, in an apparent
contradiction with the Mermin-Wagner theorem (Mermin,
1968) and in contrast to Vicsek-like models with fixed
interaction networks (Vicsek and Zafeiris, 2012). It was
argued that this is because the self-organizing mechanism
here is fundamentally different, based on the focusing of self-
propulsion energy into lower elastic modes rather than on
explicit local alignment. This model was implemented as a
control algorithm in experiments with wheeled robots (e-
pucks) by Zheng, Huepe, and Han (2020), who showed that
self-organized collective translation or rotation were reached
for a broad range of parameters, despite multiple real-world
limitations such as communication delays; see Fig. 8(a).
However, these ordered states presented marginal linear
stability and thus displayed persistent oscillations. Other
studies have considered 1D chains of elastically linked self-
aligning active agents instead of 2D elastic sheets, showing
interesting collective dynamics in simulations (Ferrante et al.,
2013b; Teixeira, Fernandes, and Brunnet, 2021).

The same model was used to explore a potential alternative
explanation for the scale-free correlations measured in bird
flocks (Huepe et al., 2015), which have been argued to result
from their critical state (Cavagna and Giardina, 2014). It was
suggested that the attraction-repulsion forces between birds
produce an elasticlike coupling between active agents, excit-
ing low elastic modes that trivially scale with the size of the
system. A similar argument was provided in an equilibrium
model of self-aligning rotors (Casiulis et al., 2020).

Turgut et al. (2020) exploited the permanent nature of the
interaction between agents in this model to compare the
resilience of the aligned state to noise for nontrivial interaction
networks, where elastic connections are established between
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FIG. 8. Collective motion in active elastic sheets. (a) Successive
snapshots of a robot swarm experiment that implements the
position-based decentralized control algorithm based on Eq. (B7)
and realizes translating collective motion (¢ = t,) after sometimes
visiting a metastable rotational state (here ¢ = 1,). The overlaid
blue lines indicate which robots are interacting. Adapted from
Zheng, Huepe, and Han, 2020. (b) Active elastic structures
obtained by physically connecting active units with springs
[see Sec. V.A and Fig. 9(b)] perform spontaneous solid body
rotation (left image) and translation (right image), with the
rotation being metastable with respect to translation (center
image). Adapted from Herndndez-Lépez et al., 2024.

agents beyond the nearest neighbors. They showed that if we
fix the mean number of interactions per agent, the critical
noise will always increase as more random (long-range) links
with Erd6és-Rényi connectivity replace nearest neighbor inter-
actions but will instead reach a maximum and then decrease if
these random links have a scale-free degree distribution
(Newman, 2010). Therefore, in contrast to most cases in
network science, here the scale-free topology does not favor
system integration.

The model was also recently extended (Lin, Han, and
Huepe, 2021) to describe a mechanical representation of an
elastic sheet composed of self-propelled agents linked through
linear springs attached to the tip of forward-projecting lever
arms of length R. This version of the model also uses Egs. (19)
but redefines the relative position with respect to which the
forces are measured as the vector between the tips of the lever
arms of the agents (where the physical springs would actually
be attached), given by r;; = (r; + Rit;) — (r; 4 Rit;), instead
of between the agent centers. For small R/;;, the interaction
thus depends mainly on relative positions, not on relative
angles, and the resulting states display the same features as in
the original model. For large R/l;; the interactions strongly
depend on changes in the relative angles and become akin to
the ferromagneticlike alignment in the Vicsek model, dis-
playing equivalent stationary states, including a loss of order
for large enough systems at intermediate noise levels due to
the Mermin-Wagner effect. For an intermediate range of
parameters, the system can transition to a novel state of
quenched disorder with random fixed mean headings. This
state was described analytically by Lin ez al. (2023) for an
analogous case with only repulsive interactions that is akin to
a dense system of self-propelled polar disks with off-centered
rotation. The latter system of disks was recently studied
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numerically under circular confinement by Tang et al. (2024),
showing the coexistence of collective states driven by self-
alignment and mutual alignment.

Finally, we note that the dynamics of a wheeled robot model
with fully anisotropic mobility tensor, as described by
Egs. (19), has to be inherently elastic. Indeed, the strong
constraint imposed by the mobility tensor would make it a
singular model in the limit where the active agents are
connected by stiff springs. This singularity is removed when
we relax this anisotropy and allow the agents to glide
sideways. In this rigid limit, if we consider an isotropic
mobility tensor, stress propagation alone induces self-organi-
zation without exciting the vibrational modes. In the limit of
rigid bonds, a mean-field-like transition is observed due to the
truly long-range interaction between agents. In this limit a
general Landau-like formalism can be established to under-
stand the dynamics of collective motion along different floppy
modes in such structures ranging from rigid body motion to
folding mechanisms (Herndndez-Loépez et al., 2024).

V. COLLECTIVE ACTUATION OF ACTIVE ELASTIC
MATERIALS

Because self-alignment is not only effective pairwise align-
ment but also alignment on the force field, one can expect
interesting new dynamics to emerge when self-aligning polar
agents are embedded in an elastic material attached to a frame.
On the one hand, the positional degrees of freedom of the
active agents have a well-defined reference state. On the other
hand, activity endows them with an additional degree of
freedom in the form of polar active forces. These forces are
expected to deform the elastic matrix and induce a stress strain
field that depends on the forces’ configuration, that is, on the
agents’ positions and orientations. The strain or stress tensor
may in turn reorient the forces. This generic nonlinear
elastoactive feedback opens the path toward spontaneous
collective excitations of the solid, which were named collec-
tive actuation by Baconnier ez al. (2022). In the following we
start by describing collective actuation in a paradigmatic
model experimental system composed of active elastic struc-
tures. We then report the apparent observation of collective
actuation in jammed systems of particles and in active Voronoi
models in confinement. Finally, we discuss the observation of
similar dynamical behaviors in various biological systems.

A. Selective and collective actuation in elastic lattices

A minimal experimental realization of an active elastic
solid with active polar units connected by springs [Figs. 9(a)
and 9(b)] was proposed by Baconnier et al. (2022). They
focused on mechanically stable ordered lattices, where each
node has a well-defined equilibrium reference position but is
displaced by the active agent. In contrast, each agent is free to
rotate and to self-align with its displacement. This nonlinear
feedback between deformation and polarization is character-
ized by two length scales: the typical elastic deformation
caused by active forces /, and the self-alignment length /,.

For small elastoactive coupling IT = [,/1,,, the dynamics is
disordered: displacements are small, and so is reorientation
by motion; therefore, angular noise dominates the polarity
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dynamics and randomizes the orientations. In contrast, for
large enough TII, collective actuation emerges. When the
system is pinned at the edges, the collective actuation takes
the form of synchronized chiral oscillations of the lattice
nodes around their reference configuration [see Fig. 9(c)], here
also spontaneously breaking the chiral symmetry present at
the level of each agent. When the pinning takes place on a
central node, both forbidding translation and free rotation, a
global alternating rotation of the entire structure, analogous to
the oscillations of a torsion pendulum, emerges; see Fig. 9(d).
A closer examination of the dynamics reveals that in both
cases only a few normal modes are actuated, and, crucially,
they are not necessarily the lowest energy ones.

The dimensionless Newton equations describing this model
experimental system correspond to Eq. (4) in the case where
w = v, with the external force F,, given by the sum of the
forces exerted by the elastic springs on each node. Using
the spring rest length [ and 7, = y/k as length and time units,
the dimensionless equations read

Tvi:i:Faﬁi_i'i"_zqri_rﬂ_l)éijv (20a)
jEai
T, = (A x F;) X iy + V 2Dé-, (20b)

where 7, =mk/y*, %,=1/ply=1,/l,, and F,=
Fa/klo = le/lO'

The collective activation dynamics is described in the
overdamped limit and in the context of the harmonic approxi-
mation, for which Eqgs. (20a) and (20b) simplify to

l't,- = Hﬁl + ZM”II], (213)
J

;= (i x ;) X i + V2DERE, (21b)
where u; =r; —r! is the displacement of the agent i away
from its reference configuration, now expressed in units of /,,,
M is the dynamical matrix of the underlying elastic structure
and I1 = pF, = 1,/1,. This simplification allowed Baconnier
et al. (2022) to show that the mode selection results from
the nonlinear elastoactive feedback, resulting from self-
alignment, which connects the linear destabilization of the
fixed points to the spatial extension and the orthogonality of
the polarization of the selected modes.

Performing simulations for large system sizes, the transition
from the disordered phase to the synchronized chiral oscil-
lations is observed to be discontinuous, with a transitional
regime of spatial coexistence between the two phases that is
controlled by the pinning condition. Baconnier et al. proposed
a coarse-grained version of the dynamical equation,

ou=Tm+F,, (22a)

1 —m?

om = (m x ou) xm+ ou—D,m, (22b)

where u(r, t) and m(r, t) are the local averages of the micro-

scopic displacements u; and polarizations 7i;, respectively.
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FIG. 9. Collective actuation in model active elastic structures.
(a) Active elastic building blocks composed of a Hexbug inside a
rigid annulus (b) are assembled with springs to form an active
elastic network. Adapted from Baconnier er al., 2022, and
Hernandez-Lépez et al., 2024. (c) Synchronized translational
oscillations around the mechanical equilibrium configuration of a
triangular lattice pinned at its edges. Adapted from Baconnier
etal., 2022. (d) Global alternating rotations of a triangular lattice
with embedded central pinning. The trajectories are color coded
from blue to red by increasing time. The red arrows indicate the
polarities 72; at a given time. Scale bars, 10 cm. Adapted from
Hernandez-Lépez et al., 2024.

The elastic force F,[u] is given by the choice of a constitutive
relation, and the relaxation term —D s results from the noise.
Note that the second term in Eq. (22b), which arises from the
coarse-graining procedure, allows the displacement’s rate to
polarize the elastic medium. Solving these equations for
homogeneous solutions (Baconnier et al., 2022; Baconnier,
Démery, and Dauchot, 2024), one finds two coexisting
solutions that are disconnected in phase space: a static
disordered one with zero magnetization and a strongly
magnetized oscillating chiral one. Future research directions
include the possibility of designing the actuation dynamics by
selectively choosing the nodes that are active (Lazzari,
Dauchot, and Brito, 2024).

B. Active jamming

In light of the aforementioned results, one would expect a
similar collective actuation to take place in jammed packings
of soft active particles with self-alignment. As the system is
jammed, its structure is essentially frozen, and therefore the
dynamics should not differ significantly from those reported
previously in the review. Active jamming was proposed as a
first step to describe the in vitro experiments on confluent
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FIG. 10. Collective actuation of a jammed packing of soft
particles. (a) Snapshot of the dynamics obtained from the
simulation of a jammed packing of self-aligning soft polar disks
described by Eq. (23). The outer glued boundary is shown in dark
gray, while the red arrows represent the instantaneous velocity
field, with v = v, corresponding to an arrow of length 1 in units
of the particle diameter. (b) Mean-square displacement as a
function of time lag for different packing fractions ¢ at fixed v,
showing a transition from diffusion at low ¢ to polar alignment
for ¢p < 0.8 to an oscillating jammed state around ¢ = 0.842.
Adapted from Henkes, Fily, and Marchetti, 2011.

monolayers of migratory epithelial and endothelial cells
(Henkes, Fily, and Marchetti, 2011). The model considers
N polar soft disks of radius «;, position r;, and orientation ;
of which evolve with the overdamped equations of motion,

Zi
"‘i = Uoﬁi+aZF[j, (233)
=1

J

, 1
0; = - (w; = 0;) +n;. (23b)

a

The soft repulsive interaction force between the ith and jth disks
is defined by F;; = —k(a; + a; —r;;)é;; if r;; < a; +a; and
defined by F;; =0 otherwise. The self-alignment term is
identical to the one introduced by Szabé et al. (2006) and
corresponds to the linearization of the self-alignment in the case
where w = . The angular noise #; is considered as Gaussian
with zero mean and variance (;(t)n;(¢')) = 6%6;;6(t — ).
This model was studied in a circular confined geometry
with polydisperse soft particles to avoid unrealistic crystal-
lization effects in the dense phase. A self-actuating or
oscillating phase emerges for small noise values at densities
above the jamming transition ¢; ~ 0.842 and at small self-
propulsion velocities; see Figs. 10(a) and 10(b). At larger
velocities a uniformly rotating state emerges, followed by a
reemergence of the circular swarm state, as analyzed by Szabo
et al. (2006), at moderate densities. The self-actuating state
was then analyzed using a normal mode formalism by
projecting the motion onto the normal modes of the packing
computed at the passive, minimized potential energy state
nearest to the average particle positions. The motion shows
regular oscillations with a frequency that corresponds directly
to the lowest available normal mode in the confined system,
and with significant coupling to only five to ten of the lowest
modes. This was confirmed using a linear response calculation
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that maps the motion to a damped oscillator in the normal
modes, with a frequency proportional to the mode stiffness K,
and damping that vanishes for the lowest excited mode.

C. Active Voronoi models in confinement

The self-propelled Voronoi model introduced in Sec. IV.C
and Eq. (18) is a more realistic model of collective cell
mechanics than the simple particles of (Szabé et al., 2006;
Henkes, Fily, and Marchetti, 2011). A good model for tissue
oscillations can thus be obtained by combining the SPV model
with self-alignment and explicit tissue boundaries that allow
for confinement. This was first implemented numerically by
Barton et al. (2017). For SPV parameters that belong to a solid
flocking phase in flat space, the model leads to steady-state
oscillations in confinement with a phenomenology that is
similar to the active jamming described by Henkes, Fily, and
Marchetti (2011); see Fig. 11(a). A significant step further was
achieved by Petrolli et al. (2019), who matched this model to
an experiment by simulating long, thin cell sheets with fixed
boundaries to match the long, thin experimental setup with
cells confined to a quasi-1D channel by selective coating with
fibronectin. As in experiments, the model kymograph dis-
played in Fig. 11(b) shows regular oscillatory phenomenology.

D. Mechanical oscillations in bacterial colonies and tissues

The two collective actuation dynamics reported in the
experimental model of active elastic structure, namely, the
synchronized chiral oscillations and the global alternating
rotation, were observed in a single system of millimeter-sized,
quasi-2D, and disk-shaped P. mirabilis biofilms (Xu et al.,
2023); see Figs. 12(a) and 12(b). The biofilm, with the top
surface exposed to air and the bottom surface in contact with
agar that provides nutrients and substrate adhesion, is laterally
confined by a rim of immobile bacteria. Under isotropic
confinement, it exhibits the two topologically distinct global
dynamics reported earlier and a transition between the two
regimes when tuning the activity level. Similar control was
achieved in the case of the toy model elastic structure
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FIG. 11. Collective actuation in a self-propelled Voronoi model
in confinement. (a) Simulated tissue in circular confinement in
the solid flocking phase showing the velocity field in steady-state
oscillation (py = 3.385 and J = 1. Adapted from Barton et al.,
2017. (b) Kymograph (spacetime plot) of the velocity along a
quasi-one-dimensional channel of simulated cells. Adapted from
Petrolli et al., 2019.
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FIG. 12. Collective oscillations in bacterial biofilms. (a) Oscil-
latory translation along circular orbits and (b) oscillatory global
rotation. Top panels: time sequences of the collective velocity
field. Arrows represent the velocity directions, and the color map
indicates the velocity magnitude in pm/s. Scale bar, 500 pm.
Bottom panels: temporal dynamics of the spatially averaged
collective velocity decomposed into Cartesian (yellow and blue
traces) and polar-coordinate (red: azimuthal, green: radial)
components. Adapted from Xu et al., 2023).

(Baconnier, 2023). The biofilm also exhibits self-sustained
elastic waves with a power-law scaling of the wave speed with
activity (Xu et al., 2023). Xu et al. reproduced their finding in
a model of overdamped self-aligning self-propelled particles
connected by Hookean springs in a 2D triangular lattice,
which is close to the one introduced by Baconnier et al. (2022)
to describe the model experimental active elastic structures.
The global alternating rotation dynamics was also observed in
a dense active suspension of Escherichia coli confined in a
viscoelastic fluid, the rheology of which is controlled by the
addition of purified genomic DNA (Liu et al., 2021). This
behavior is explained by the interplay between active forcing
and viscoelastic stress relaxation without explicit reference to
a self-alignment mechanism. However, as Liu et al. used a
coarse-grained model, this explanation does not preclude the
existence of self-alignment at the microscopic scale.
Epithelial cell sheets are often subjected to large-scale
deformation during tissue formation and the active mechanical
environment in which they operate is known to promote
collective oscillations. For instance, epithelial monolayers of
Madin-Darby canine kidney (MDCK) cells in circular con-
finement exhibit swirling flows, which rely on the interplay of
confinement and local alignment (Doxzen et al., 2013). This
swirling flow can be supplemented by a subdominant radial
oscillation (Deforet et al., 2014; Notbohm et al., 2016).
Analyzing the collective motion of epithelial cells confined
to a quasi-one-dimensional channel in the light of numerical
simulations, based on a self-propelled Voronoi model (see
Sec. V.C), recent works (Petrolli er al., 2019) showed that
tuning the length of the confining channel drives a phase
transition between a state of global oscillations and a multi-
nodal wave state; see Fig. 13(a). This transition is a conse-
quence of the interplay between local cell active dynamics and
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FIG. 13. Collective oscillations in tissues. (a) The velocity field
of MDCK cells seeded onto a polyacrylamide gel patterned with
fibronectin stripes are measured by PIV. Top image: kymograph
representing the average horizontal velocity v (x; ) demonstrates
the presence of spatial and horizontal oscillations. Bottom
panel: example of the velocity profile along the dashed line.
Adapted from Petrolli et al., 2019. (b) Dynamics of a confluent
HaCaT monolayer in square confinement. Top image: snapshots
of the cell monolayer superimposed with representative trajecto-
ries of single cells performing translational oscillations along
circular orbits. Scale bar, 100 mm. Bottom panel: time evolution of
the two projected components, V, = (v )ro; and Vy = (vy)ror»
and norm of the velocity ||V|| = (V24 V2)"/2 computed on a
cropped area in the center of the square of the top image. Adapted
from Peyret et al., 2019.

global confinement. The effect is demonstrated to rely on self-
alignment. Also noteworthy are the dynamics reported in the
case of human keratinocytes (HaCaT) and enterocytes (Caco2),
where all cells perform a synchronized chiral oscillation
(Peyret et al., 2019); see Fig: 13(b). Using molecular pertur-
bations, Peyret et al. demonstrated that force transmission at
cell-cell junctions and its coupling to cell polarity are pivotal for
the generation of these collective dynamics. This system was
then modeled using self-alignment dynamics with a phase-field
model of the tissue, where each phase corresponds to an
individual deformable cell.

VI. DISCUSSION AND PERSPECTIVES
A. A unified framework?

The models discussed in this review (see Table I) distin-
guish themselves by the role of elasticity and by the type of
boundary condition. They can also include translational and/
or rotational inertia or no inertia. Most importantly, they differ
by the way self-alignment was phenomenologically intro-
duced. In this section we discuss how far one can formulate a
unified framework for these different classes of self-aligning
polar agents.

We start by addressing the role of inertia. Active Brownian
particles were first introduced as fully overdamped polar
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active particles without alignment. The model was later
upgraded in a series of papers (Scholz et al., 2018; Lowen,
2020) by including inertia in both the translational and the
orientational motion. Analytical results were obtained for the
orientational and translational correlation functions of the
single-particle dynamics, displaying good agreement with
experiments using vibrated granular systems. More exact
analytical predictions for higher-order statistics were also
obtained by devising an inertial active Ornstein-Uhlenbeck
particle, which further simplifies the active Brownian dynam-
ics by enforcing Gaussian fluctuations (Sprenger et al., 2023).
More specifically, it was shown that rotational inertia is
fundamentally relevant to reproduce the temporal delay
between the active force and particle velocity observed for
a single active granular particle.

Obtaining similar results for inertial self-aligning particles
would be of great interest. Thus far, the only work considering
both angular and translational inertia for self-aligning particles
is limited to deterministic dynamics (Fersula, Bredeche, and
Dauchot, 2024). Furthermore, the results in the work of
Fersula, Bredeche, and Dauchot suggest that accounting for
fluctuations will be a difficult task. Indeed, they demonstrated
that the coupling of self-alignment with angular inertia
produces unexpected nontrivial dynamics already at the
deterministic level, including the coexistence of different
solutions and unexpected oscillations that take place when
one considers interaction with a wall.

Regarding the simpler case of translational inertia with
overdamped angular dynamics, it was considered both when
studying the dynamics of a single self-aligning polar agent in a
harmonic potential (Sec. III.LB) and when modeling the
collective dynamics of the vibrated disk experiment
(Sec. IV.A). In the first case, it was shown analytically that
translational inertia does not alter the fixed points or the
orbiting solutions. It merely modifies the stability region of
the latter and, when large enough, it leads to a coexistence in
phase space of the stable climbing solution and the stable
orbiting one. However, existing experimental systems fall far
short of reaching this level of translational inertia. Regarding
the collective dynamics of vibrated disks, including transla-
tional inertia, was required to obtain a quantitative mapping
between the numerical simulations and the experiments
(Weber et al., 2013). Translational inertia also plays a role
in the precise shape of the phase diagram for the transition to
collective motion computed by Lam, Schindler, and Dauchot
(2015a, 2015b) and shown in Fig. 4(a), but it does not
qualitatively change the picture of the transition to collective
motion for self-aligning polar agents. Altogether, these
analyses suggest that translational inertia can be safely
neglected in most contexts considered to date.

We now discuss the way self-alignment was introduced on a
phenomenological basis. The model variants regarding the
coupling between the translational and rotational dynamics
can be distinguished according to the following conditions:

e Whether the alignment strength is proportional to the

amplitude of the velocity (w = v =7#) or not propor-
tional to the amplitude of the velocity (w = ).

e Whether the aligning torque is linearized (L) or not

linearized (NL).
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According to the mechanical model described in Sec. II and
detailed in Appendix A, the self-alignment torque should read
T, = y(r,, —rs) X F,, corresponding to the case w = v = .
A key requirement for inducing self-alignment in the model is
thus that the center of mass r,, differs from the center of
friction ;. The aligning or antialigning dynamics arise from
the parallel or antiparallel character of the self-propulsion
direction 7 with respect to the vector r,, —ry. This is indeed
the case in the experiment described in Sec. II.A, where a
Hexbug is driven along the side of a square, and for the self-
aligning polar agents illustrated in Fig. 2(c), where two
different exoskeleton designs mounted on simple walkers
change the sign of the self-aligning torque.

Despite the previous discussion, one cannot exclude the
possibility that, in a more complex form of self-propelled
agent (for example, with a deformable body), the self-align-
ment strength could have a different dependence on the
amplitude of the velocity wv. It is thus of interest to clarify
what qualitative difference the choice of w = v orw = ¥ can
have on the dynamics. For instance, in the Supplemental
Material of Dauchot and Démery (2019), it was shown that
making the choice w = ¥ suppresses the frozen, climbing
state of a Hexbug in a harmonic potential and that the orbiting
state is observed for any positive value of the coupling
parameter.

To assess the generality of these results, we introduce a
more general model for the angular dynamics:

0= plvlfl(a < b) - 2]. (24)

The choice v = 1 thus corresponds to w = v, while v =0
corresponds to w = ¥. The function f[x] is given by f[x] = x

B =0.001 B =0.1

when the aligning torque is NL and given by f[x] = sin~!(x)
when it is L. In general, it should be a nonsingular odd
function with a domain given by [—1, 1]. At the single-particle
level, analyzing the stationary states and the stability of the
frozen state in a harmonic potential (Appendix B), we find that
for v < 1 chiral states are observed for all the values of the
alignment parameter /3, while for v = 1 they are observed only
beyond a threshold f.. For v > 1 multiple chiral states may
exist. The results are largely independent of the particular
choice of fI[x].

At the collective level, synchronous oscillations were
reported whether w = v or w = ¥, but for different systems.
The case w = v was discussed in the context of elastic
structures, while that with w = » was considered for dense
assemblies of soft particles. To clarify the situation, we have
run simulations of Egs. (5), withw = vand w = ¥, in jammed
assemblies of particles and an elastic network; see Fig. 14.
Regardless of the system of interest, when w = v, there is a
regime at small self-alignment where collective actuation does
not take place, and the transition first reported in the case of
elastic structures is also observed in the case of jammed
assemblies of soft particles, while in the case of w =1
collective actuation takes place for arbitrary small values of
the self-alignment. Hence, the collective behavior essentially
inherits here the property analyzed at the single-particle level.

B. Large-scale hydrodynamics theory

Large-scale hydrodynamics formulations of dry active
matter were introduced as early as 1995 to describe the
flocking phase of polar liquids (Toner and Tu, 1995). Soon
thereafter, the case of active nematic liquids on a substrate
was also considered (Ramaswamy, Simha, and Toner, 2003).
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FIG. 14. Collective actuation in particle systems (left images) and elastic network (right images) for w = v and w = ¥, respectively.
Images were obtained from simulating Eq. (5) with the appropriate interactions (harmonic repulsion or harmonic springs) and in the

limit of small angular noise.
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In both cases the phases that were considered are liquids of
particles taking their momentum from the ground. The theory
of active gels, on the contrary, was introduced to describe the
mechanical behavior of cells, assuming momentum conser-
vation (Kruse et al., 2004, 2005). In addition, it accounts for a
short-time elastic regime that is captured by introducing a
Maxwell timescale in the constitutive relation. Such hydro-
dynamic theories were obtained from a perturbative expansion
around a specific ordered state (Toner and Tu, 1995;
Ramaswamy, Simha, and Toner, 2003), the existence and
stability of which is not guaranteed or by introducing
constitutive equations between the fluxes and the forces
identified from the entropy production rate close to equilib-
rium (Kruse er al., 2004), at the cost of leaving aside systems
that are far from equilibrium. Alternatively, one can write
down a microscopic theory and coarse grain it to obtain the
hydrodynamic equations for the large-scale fields (Marchetti
et al., 2013). There are several ways to implement such an
explicit coarse-graining procedure, depending on their starting
points. One can start with a Boltzmann equation describing
the dynamics of the one-particle probability density
(Boltzmann, 1872). This approach has been followed for
polar particles with polar (Bertin, Droz, and Grégoire, 2009;
Peshkov ef al., 2014) and nematic alignment (Bertin et al.,
2013) for Janus particles avoiding dense regions (Zhang et al.,
2021) and for colloidal rollers interacting hydrodynamically
(Bricard et al., 2013). One could also start one step ahead,
with the Smoluchowski equation for the N-body probability
density (te Vrugt, Lowen, and Wittkowski, 2020), as exem-
plified in an analysis of the phase separation of self-propelled
repulsive disks (Bialké, Lowen, and Speck, 2013), or with the
Dean equation (Dean, 1996), a Langevin equation for the
microscopic density field, as illustrated by the derivation of
the active model B+ (Tjhung, Nardini, and Cates, 2018) and
the discussion of the motility-induced phase separation in the
presence of velocity alignment (Barré ef al., 2015). In all cases
this difficult task is paved with approximations that are not
always well controlled. Nevertheless, active hydrodynamic
theories have the advantage of being generic in the sense that
they are able to describe different systems, provided that these
share the same conservation laws and symmetries.

The polar systems discussed in the context of this review
take their momentum from the ground and therefore belong to
the so-called class of dry polar active matter, for which there is
no conservation of momentum. Their liquid phase is therefore
described by Toner-Tu-like equations (Toner and Tu, 1995;
Toner, Tu, and Ramaswamy, 2005), and the Landau terms of
these equations were explicitly derived for self-aligning disks,
thus demonstrating that self-alignment effectively leads to
collective motion (Lam, Schindler, and Dauchot, 2015a,
2015b), as discussed in Sec. IV.A.

The case of active solids was considered only more
recently. A first approach is to couple phase-field crystals
with the Toner-Tu equations to describe solid polar flocks
(Menzel and Lowen, 2013; Alaimo, Praetorius, and Voigt,
2016; Ophaus, Gurevich, and Thiele, 2018). This, however,
ignores a symmetry-mandated coupling between orientation
and strain due to rotation invariance. In passive orientationally
ordered solids, such a coupling leads to the vanishing of the
zero-frequency shear modulus (Dalhaimer, Discher, and
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Lubensky, 2007). The role of activity includes the possibility
of stable uniaxial active solids when momentum is not
conserved, and the instability of the uniaxially ordered phase
in momentum-conserved systems for large active forcing
(Maitra and Ramaswamy, 2019). In all cases such theories
of active solids have thus far considered oriented active solids,
that is, active solids with polar or nematic order. In the context
of this review, they predict the stability at large scale of
collective motion in the active sheet.

A complementary approach is to considered scalar active
solids, where activity stems from nonconservative interaction
forces (Scheibner et al., 2020). Considering the case where
momentum is conserved, the forces derive from a stress tensor,
which in the limit of small strain is linearly related to the strain
tensor by the static elastic modulus tensor, as is the case for the
usual passive elastic materials. However, static elastic moduli
altogether absent in passive elasticity can arise from the active,
nonconservative microscopic interactions. These active
moduli enter the antisymmetric part of the static elastic
modulus tensor—hence the name ‘“odd elasticity”—and
quantify the amount of work extracted along quasistatic strain
cycles. The application of these ideas to the systems described
here is not straightforward, because the absence of momentum
conservation gives rise to forces that do not derive from a
stress tensor. However, the self-alignment is likely to con-
tribute to the active part of the stress tensor, including the odd
part of it.

Altogether, the large-scale physics of active systems com-
posed of self-aligning active agents remains largely unex-
plored. In the liquid polar state, the computation of the Landau
terms of the Toner-Tu equation demonstrates that the mean-
field transition to collective motion can be first order, in sharp
contrast to the case of the Vicsek model. The consequences of
it beyond the mean field remain unknown. The solid polar
state is stable at large scale (Maitra and Ramaswamy, 2019);
however, the role of structural defects remains unexplored.
The mechanical response of such active solids, with the
possibility of odd elasticity, also remains unexplored.
Finally, the fate of the transition to collective actuation at
large scale is unknown. One possible avenue for making
progress in this last direction is the possible connection with
nonreciprocal phase transitions.

C. Connection with nonreciprocal phase transitions

It was recently shown that systems composed of micro-
scopic degrees of freedom experiencing nonsymmetrical
interactions, together with nonconservative dynamics, are
prone to develop chiral phases via a specific kind of phase
transition called nonreciprocal (Fruchart et al., 2021), which
are controlled by the presence of exceptional points. Self-
alignment can be seen as a nonreciprocal internal coupling
between the displacement and the orientation within each
active particle: the polarity aligns with the displacement rate,
while the displacement evolves following the sum of active
and elastic forces. At the level of a single active particle in a
harmonic potential, in the case w = v, the polarity and
displacement vectors explicitly experience nonsymmetrical
interactions. Eliminating adiabatically the dynamics of the
amplitude of the displacement, one finds that the phase of the
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displacement vector is chasing that of the polarity (Henkes,
Fily, and Marchetti, 2011; Baconnier, 2023). It is also found
not only that the transition takes place through an exceptional
point but also that the entire orbiting, or chiral, phase stands on
a line of exceptional points in the parameter space. At the
level of the coarse-grained equations [Eqgs. (22)], when
linearizing them around the disordered phase and mapping
them to the most general equations, one can write for rota-
tionally symmetric vectorial order parameters, one finds that
the macroscopic displacement and polarity fields also couple
nonsymmetrically (Baconnier et al., 2022).

Nonreciprocal phase transitions could therefore be a good
paradigm to discuss the transition to collective actuation.
A more precise analysis, however, remains to be done. In
particular, the transition considered here takes place from
the disordered to the chiral phase, while that discussed in the
context of nonreciprocal phase transitions arises from the
polar or antipolar phase.

D. Further perspectives

We conclude this review by offering a few perspectives that
we believe to be promising research avenues. At the con-
ceptual level, the increasing importance of self-alignment as a
generic mechanism for collective actuation in active solids is
likely to raise many theoretical developments. As mentioned,
a general continuous description of dry active solids, not to
mention the mechanical properties of such solids, from linear
elasticity to plasticity and failure, is still missing. The stability
of collective actuation in the thermodynamic limit remains to
be investigated. Since collective actuation results from the
coupling of a spinlike degree of freedom to the vibration of the
elastic structure, it could be interesting to probe the response
to an external polarizing field: controlling the orientation of
the agents with an external field could be a practical way of
controlling the actuation locally.

In a different vein, it was recently shown that bulk or
boundary disorder are relevant to active systems because of
the presence of long-range density and current modulations
(Morin et al., 2017; Besse, Chaté, and Solon, 2022;
Benvegnen et al., 2023; Granek et al., 2024). This is also
true for any amount of anisotropy, which drastically alters the
phenomenology of flocking from that of the rotationally
invariant case (Solon er al., 2022). The precise properties
of collective actuation in the presence of disorder are a central
issue for any practical application. Different types of disorder
must be considered. The elastic structure can, for instance,
include several types of defects or can instead correspond to
an inherently disordered jammed or glassy packing. One may
also want to consider disorder in the self-aligning strength or
the effect of a random external field. Given that elastic modes
will couple differently in the presence of disorder, one can
expect interesting new behaviors such as localization of the
actuation.

A last general question concerns the sign of the self-aligning
torque. It was realized only recently that negative self-alignment
can lead to interesting dynamics (Ben Zion et al., 2023), and
there has not yet been a systematic study of the collective
dynamics of a large assembly of self-antialigning particles.
When two such particles collide, they point toward each other,
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leading to an effective adhesion that can be much stronger than
in the case of scalar active matter. It is thus likely that such
particles will experience motility-induced phase separation at
low packing fraction, even for moderate persistence time. In
addition, the coupling of antialignment with elastic interactions
to date remains completely unexplored.

In the context of swarm robotics, it was shown that the sign
of self-alignment can be influential in the way that a swarm of
robots solves a simple phototactic task, with strong steric
frustration (Ben Zion et al., 2023), and can make it an
essential ingredient of self-organization and function. For
example, in biological organisms like Trichoplax adhaerens,
self-alignment is thought to play a role in setting large-scale
coordination and complex forms of locomotion (Davidescu
et al., 2023). The complex dynamics and the different modes
of collective motion of elastic structures doped with self-
aligning active agents are thus an interesting direction to
create autonomous robots exploring their environment and
interacting with it.

In dense biological systems like cell monolayers and bacterial
biofilms, self-alignment is not the only contribution to the
repolarization of the microscopic agents. For monolayers
explicit active coupling between contractile junctions with
nematic symmetry and mechanochemical feedback need to
be considered (Rozman, Yeomans, and Sknepnek, 2023;
Sknepnek er al., 2023), and in bacterial biofilms explicit
nematic shape alignment has to be taken into account. This
begs the question of how informative the empirically observed
emerging collective dynamics on the properties of the micro-
scopic constituents is. Can one state that self-alignment is
present or dominant, even effectively, if collective actuation is
observed? Thus, constructing an explicit test for self-alignment
becomes important. Since taking a single cell out of its
environment irrevocably changes its phenotype, unlike for
mechanical particles, this will need to take place at the collective
level. A good avenue for this test will be to exploit the intimate
relation of collective actuation to elastic normal modes and vary
the system size and boundary conditions to make predictions.

VII. CONCLUSION

In this review we have reported the numerous occasions
where self-alignment manifests itself in the field of polar
active matter. Although this generic, mechanically rooted
coupling between the polarity and the velocity of a self-
propelled particle was introduced as early as 1996, it remained
overlooked for a long time, mostly because it was thought that
its specificity could be integrated out into some form of
mutual alignment at the effective level. This vision, which is
partly correct when the emergence of collective motion is
considered, misses the potentiality offered by self-alignment
when dense assemblies of self-propelled particles or elastic
networks are considered. In that context, where the particle is
essentially confined in a local harmonic potential, the natural
tendency of a self-aligning particle to perform orbiting
motion, as a result of a spontaneously broken chiral symmetry,
leads to unanticipated forms of collective dynamics.

These new dynamics are prominent in the realm of
biological systems such as bacterial rafts and tissues and
are likely to play a crucial role in large-scale synchronization
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phenomena. Indeed, given that some cells have been shown to
follow self-alignment rules, evolution has likely exploited this
mechanism to achieve self-organization in multiple contexts.
It could be relevant, for example, in the collective migration of
tumor cells or in the formation of structures during organism
development. The medical applications that could stem from a
better understanding of self-alignment could thus be wide-
ranging.

In the context of metamaterials, self-alignment can be
implemented in multiple ways by integrating passive mechan-
ics with actuators that, in the future, could be mass produced
and miniaturized. This will allow the manufacturing of
materials with unique rheological properties, such as contin-
uing to deform as prompted after all external stresses have
stopped. These materials could also potentially control their
modes of self-organized collective actuation, allowing the
design of specific actuation patterns that result in new
autonomous functions. There are therefore also great potential
applications of self-alignment to material sciences.

Finally, in the context of swarm robotics, self-alignment
allows for simpler computation rules among agents, which
need to evaluate only their neighbors’ positions, not their
velocities. In fact, in some contexts self-alignment can even be
introduced through a mechanical coupling between robots,
with its dynamics becoming part of the embodied computa-
tions in a robot swarm. This simplicity of implementation of
self-alignment could be useful in systems where the sensing
and control capabilities are limited in order to reduce the size,
complexity, or cost of each agent. The robustness of the
collective dynamics emerging from self-alignment could also
facilitate the development of robot swarms that perform
reliably in noisy environments and with limited sensing.
We believe that self-alignment is opening promising new
routes of research and hope that this review will serve as a
useful guide to the diversity of models that have been
independently introduced over the past 30 years.

APPENDIX A: MECHANISMS FOR SELF-ALIGNMENT
1. Self-alignment of axisymmetric rigid walkers

We consider here an arbitrary body of volume }V held rigid
by a distribution of pairwise internal forces fi,(r), with a
distribution of mass 7(r), a distribution of friction coefficient
7(r), and a distribution of active and external forces f,.(r) and
Sext(r) acting upon it. The equations of motion applied to each
point of this rigid solid read

M(r)F = foa(r) =7(0F + fex(r) +fi(r). (A1)
Introducing the center of mass r,, = (1/m) [, m(r)rdr, with
m = [, m(r)dr the total mass, and the center of friction
ry = (1/y) [\y7(r)rdr, with y = [}, 7(r)dr the effective fric-
tion coefficient, the equation of motion for the center of mass
is obtained by integrating Eq. (A1) over W,

mi:m:Fa_yi‘f"i_Fextv (Az)
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where F, = [},f ot (r)dr, Fex, = [} f ex((r)dr, and the internal
forces cancel out, [fin(r)dr = 0.

Similarly, the equation for the angular degrees of freedom is
obtained by integrating the local torques with respect to the
center of mass,

M) X F = o X [faed(r) = F(O)F +Fexi(r) + fin(r)l, (A3)

where p,, = r —r,,. Recalling that for solid body rotation 7 =
i+ Qxp, and that ¥ =#, +Qxp, +Qx(Qxp,),
where Q is the solid body rotation vector, and using
Jwp,dr = 0 by definition, the integration of the left-hand
side of Eq. (A3) leads to

/ (o % F = [, (Ad)
w

with 1,, = [),7(r)|p,,|?dr. When the active and external
torques T, = [}y X faedr and Ty = [0, X fexdr are
introduced, the integration of the right-hand side of Eq. (A3)
thus leads to

ImQ:Ta“l‘}/(rm_rf)Xim_yrQ+Texts (AS)

Wlth Yr= fW}‘;(r) |pm|2‘

Denoting 72 as the direction of the active force, we now
specifically consider a polar active particle whose active forces
and friction distributions are symmetric with respect to the
axis aligned with 72 and going through the center of mass r,,.
In such a case, T, = 0 and r,,, — r; and 7 are colinear, so we
can define (it = y(r,, —ry). Equations (A2) and (A3) then
read

mi,, = F it — yip + Foy, (A6a)
1,Q =i x i, —7,Q + Tey, (A6b)

with
Fp=F, +Qx(r;—ry,), (A7)

where one recognizes Eq. (1) of the main text.

Four comments are of interest. First, one learns from this
calculation that the sign of { is governed by the relative
position of the center of friction r; with respect to that of the
center of mass r,,. Second, the self-aligning torque with
w = F,,/|F,|, introduced in the literature on a phenomeno-
logical basis, has no clear mechanical justification. Third, and
perhaps most importantly, previous works have assumed the
equality of the velocities of the center of mass and the center
of friction, which is not valid in the presence of self-alignment.
Taking the equality into account properly amounts to an
additional force term —{Q X #1 acting perpendicularly to the
active force when the particle body rotates.

However, we soon show that, for an overdamped dynamics,
the assumption is reasonable as soon as b = |r; —r,,| is small
compared to the typical agent size R. Indeed, Eqs. (A6b)
and (A7) read

015007-22
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Fp="F, +ebQxi, (A8a)

7.0 = eyb(it x i) - 2, (A8b)
where € = +1 and we have ignored the external torque, which
plays no role in the argument. There are two length scales of
interest: the alignment length /, = y,/yb and b. Using [, as
the unit length, we can rewrite Eqs. (A8a) and (A8b) as

b
Fp =¥, +€len (A9a)

0 = e(it x ivy) -2 + T, (A9b)
where one sees that the validity of the assumption is controlled
by the ratio b/l, ~ (b/R)?, which is generally small.
Finally, in the overdamped limit, one notes that if the
external force is not given by gravity, the center of mass
becomes irrelevant for the dynamics. Therefore, it is conven-
ient to consider the torque in Eq. (A6b) from the position at
which the external torques vanish r,, if it exists, instead of the
center of mass. This leads to a zero external torque in the self-
alignment equation, where now all r,, — r,, meaning that {
is then given by (it = y(r, —ry) and y, = [, 7(r)|r, —r.

2. Self-alignment through nonaxisymmetric forces

Self-alignment can also emerge from other asymmetries.
We consider a total of N off-centered disks, either rigidly
connected with elastic springs (a rigid network) or elastically
interacting with only their repulsive counterparts. The “off-
centered” aspect suggests that the center of mass of these disks
is not at their geometric centers. The center of mass of the ith
particle ™ is defined as r™ = r&© + Rii;, where r<© is the
position of the geometric center and R is the distance between
the center of mass and the geometric center. The total
interaction force acts on the ith disk f; = > f;;(rf™, réM).

In overdamped dynamics the position of the ith off-centered
object evolves as

Fi = voit; + Mif, (A10)
where M; represents the mobility matrix, which is defined as
M; = pyfi;ft; + p o (I—#;7;). We recover the evolution of the
heading direction #; by letting # = SR as follows:

he = U b (A1)
which is equivalent to ; = B(#; x f;) - 2. In this context, self-
alignment emerges owing to the alignment of the heading
direction 72; toward the total interacting force f;, unlike the
alignment toward velocity »; observed in the case of over-
damped rigid walkers, as presented in Appendix A.1.

The self-alignment torques then emerge as explicit mechani-
cal torques 7; = S ;r™ x fi;(re™, réM), where § sets the

T
strength of the self- ahgnment ThlS can be expressed as

Self-aligning polar active matter

In this interpretation, when the center of mass is positioned
toward the heading direction 72;, i.e., rCM = rCO + Rn;, it leads
to alignment 7; = BRf,; - it;-. Conversely, when the center of
mass is positioned 0pp0s1te to the heading direction 7, i.e.,
™ = 0 — Ry, it results in antialignment, z7; = —fRf; - fi;-.
In this scenario alignment or antialignment emerges purely
from the dynamics of elastically interacting objects with off-
centered masses.

APPENDIX B: SELF-ALIGNING ACTIVE PARTICLE IN A
HARMONIC POTENTIAL WITH ISOTROPIC DAMPING

1. General model

After rescaling the equations of motion are given by:
F=n-r, (Bla)

0 = plvl*fl(a x ) - 2], (B1b)
where f[x] is a nonsingular odd function with a domain given
by x€[—1,1]. The cases considered in the literature include
flx] = x and f[x] = sin~!(x). The exponent v is non-negative;
in the literature the values used are v = 0 and 1.

Using the rotational invariance, one describes a given state
using the distance r to the origin and the angle ¢ between the
position and the orientation. If a is the angle of the position, ¢
is given by ¢ = 0 — a. Projecting Eq. (Bla) on r and r*, we
get i =cos(¢p) — r and r@ = sin(¢). Using these two pro-
jections, we can get the norm of the velocity, |v|=

\/ 1+ r? —2rcos(¢), and the vector product,

(AxDd)-z2=—(xr) z/|v|

- rsin((j))/\/l + 12 —2rcos(¢).

Finally, we get

i =cos(¢p) —r, (B2a)
d=p+rr=2r Cos(¢)]”/2f[\/l n :;if(jr)cos(@
_sin(¢) . (B2b)

r

2. Stationary solutions

We now consider stationary solutions that satisfy i = 0 and
¢ = 0. These contain the frozen state where » = 1 and ¢ = 0
and chiral states where ¢ # 0. From i = 0 we get r = cos(¢),
and inserting this relation into (,b =0, we get

rsin(¢)
| sin(¢)]

Since f(x) is odd, —¢ is a solution if ¢ is a solution; we thus

Bl sin(¢p )Wf[ ] “tn(¢). (B3

7; = £fRh; x E ’ij(erMvr]CM)- (A12)  assume that ¢ > 0 and use cos(¢) = r and sin(¢p) = V1 — r2
J to get an equation for r,
Rev. Mod. Phys., Vol. 97, No. 1, January—March 2025 015007-23
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V1-r2

P = )2 f[r] = (B4)
r
The frozen state corresponding to r=1 and ¢ =0 is a

solution for v > 0. Chiral states corresponding to r < 1 satisfy

1 — 2)(1-0)/2
pr = L2 (85)
For v < 1 there is always a solution: chiral states exist for all
values of . For v = 1, chiral states exist if g > 1/f[1]. For
v > 1, zero, one, or two chiral states may exist, depending on
the value of f.

3. Stability analysis of the frozen state

We perform a stability analysis on the frozen state for v > 0.
We assume that ry =r—1 <1 and ¢ < 1 and use these
expansions in Egs. (B2a) and (B2b). At the lowest order,

¢2

4 (B6)

i‘lz—rl

b= B(r? + ¢*)"/? [705 ]—. B7
Considering positive values for ¢, we see that if f(x) > ax
(which is the case for the two situations considered here),

¢ > [Ba(r} + ¢*) =2 — 1], (B8)

For v < 1, the first term in brackets is large, meaning that the
orientation dynamics is unstable.

4. Conclusion

We conclude that for v < 1 chiral states are observed for all
the values of the alignment parameter 5, while for v = 1 they
are observed only beyond a certain value. The situation is
more complicated for v > 0, as multiple chiral states exist,
with some of them stable and others unstable.

APPENDIX C: SELF-ALIGNING ACTIVE PARTICLE IN A
HARMONIC POTENTIAL WITH ANISOTROPIC
DAMPING

1. General model

The equation of motion for the position vector r in the
presence of anisotropic damping after rescaling is given by

= — Mr. (C1)

In this context M represents the mobility matrix, which is
defined as M = pyfaft +-p, (I — fa it). We express the mobility
matrix in terms of a single control parameter y, which is
defined as p = (1 +y) and p; = (1 —y). For y =0, the
equation of motion simplifies to the isotropic damping case,
which is expressed as i+ =7 —r. Conversely, for y =1 it
simplifies to # = [1 — 2(r - ft) . Projecting onto r and r*, we

Rev. Mod. Phys., Vol. 97, No. 1, January—March 2025

obtain

F=[1=(1+y)rcos(¢)] cos(¢)
— (1 =x)rsin(¢) sin(¢).
ra=[1 = (1+ y)rcos(¢)]sin(¢)
+ (1 = y)rsin(¢) cos(¢). (C2)

The orientation angle, which evolves with self-alignment, is
given by 6 = (i x f) - 2, which simplifies to

0=—pxr)-z. (C3)

Finally, we can write the ¢ = 8 — @ dynamical equation as

2 _
b= () cosl) | sine)

— (1 =) sin() cos(¢). (C4)

2. Stationary solutions

We obtain the stationary solutions for Egs. (C2)—(C4) by
setting 7 = 0 and ¢ = 0. These solutions include the frozen
state, characterized here by ¢ = 0 and r = 1/(1 + y), as well
as chiral states with ¢ # 0.

Imposing # = 0, we find that » = cos(¢)/[1 + y cos(2¢)].
Inserting this relation into ¢ = 0, we obtain

Beos?(¢) = [1 + y cos(2)[{[1 + y cos(24)]
— 2 sin(¢)cos?(¢) }. (C5)

For isotropic damping with y = 0, the corresponding solu-
tions are #cos’(¢p) = 1 and fr* = 1. For the fully anisotropic
damping case with y = 1, the solutions are 8 = 4cos?(¢)[1 —

sin(¢)] and pr* = (1 — /1 — (1/2r)?).

3. Conclusion

Anisotropic damping can strongly change the dynamics of
self-aligning active agents. A complete theoretical exploration
of its impact, even in the simplest case of a single self-aligning
particle in a harmonic potential, has yet to be developed.
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