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Single-file transport, arising in quasi-one-dimensional geometries where particles cannot pass each
other, is characterized by the anomalous dynamics of a probe, notably its response to an external force. In
these systems, the motion of several probes submitted to different external forces, although relevant to
mixtures of charged and neutral or active and passive objects, remains unexplored. Here, we determine how
several probes respond to external forces. We rely on a hydrodynamic description of the symmetric
exclusion process to obtain exact analytical results at long times. We show that the probes can either move
as a whole, or separate into two groups moving away from each other. In between the two regimes, they
separate with a different dynamical exponent, as t1=4. This unbinding transition also occurs in several
continuous single-file systems and is expected to be observable.
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Single-file transport arises in systems as varied as ionic
channels [1], nanotubes [2–6], and zeolites [7]. The hall-
mark of these systems does not lie in the collective
dynamics, which is simply diffusive, but in the motion of
individual probes [8,9]. In the absence of an external force, a
single probe diffuses anomalously due to the interactions
with its neighbors, its mean squared displacement scaling as
hXðtÞ2i ∼ ffiffi

t
p

[7,9–13]. In response to a constant external
force, its displacement evolves as XðtÞ ∼ ffiffi

t
p

, in agreement
with the fluctuation-dissipation theorem [14,15]. The prob-
ability density function of the probe is Gaussian at long
times. Finite time corrections have recently been determined
[16], and generalized to systems with an initial density
gradient [17] or to a driven probe [18,19]. Remarkably, a
driven probe drags with it the surrounding particles, which
can be seen as “bound” to the probe [18].
In contrast, the effects involving several driven probes

remain unexplored, despite their relevance to the situations
described above. An especially important example con-
cerns the ionic transport through subnanometer carbon
nanotubes [6]. Indeed, in these nanotubes, water molecules
are confined to a single-file chain [2,6], and ions act as
driven particles if a potential difference is applied between
the reservoirs.
Here, we determine the response of several probes to

external forces [Figs. 1(a),2(a),3(a)]. We show that the
bonds induced by the single-file geometry can be broken;
we characterize this unbinding transition, and explain its
impact on the motion of the probes. We obtain exact results
for the average positions of the probes in the simple
exclusion process (SEP), which is a paradigmatic model
of single-file systems. These conclusions are shown to also

apply to model colloidal systems used in experiments
[9,13], which points towards their universality.
In the SEP, particlesmove on a one-dimensional latticewith

stepa; single-file diffusion is enforcedby allowing atmost one
particle per site [Fig. 1(b)]. The density ρ is the proportion of
occupied sites. Each particle can jump to the left or to the right,
with rates 1=ð2τÞ. For the probes, these rates are modified: a
probe submitted to an external force f jumps to the left and
to the right with rates ð1 − sÞ=ð2τÞ and ð1þ sÞ=ð2τÞ,
respectively, where s ¼ tanhðaf=½2kBT�Þ is set by detailed
balance. Note that the gas of pointlike Brownian particles at
density ρ̂ is recovered as the limit of the SEP at vanishing
density, ρ → 0, with ρ̂ ¼ ρ=a kept constant.
First, we focus on the asymmetric case with two

probes [Fig. 1(a)]. Initially located at X1ð0Þ ¼ −L=2 and
X2ð0Þ ¼ L=2, with L ≫ a, with a uniform density ρ∞
of unbiased particles, they are submitted to forces
f1 ¼ −f2 ¼ −f. We performed numerical simulations
[20] and observed two behaviors: they can either remain
bound, or unbind and move away from each other, their
displacement being proportional to

ffiffi
t

p
[Figs. 1(c), 1(d)]. In

the bound state, the equilibrium distance between the
probes increases with the force and diverges upon
approaching a critical force; conversely, the factor of

ffiffi
t

p
in the unbound state decays to zero as the critical force is
approached from above [Fig. 1(e)]. At the critical force, the
probes separate with a different exponent [Fig. 1(d)].
Two probes submitted to external forces f1 and f2 can

also be bound, and move together as
ffiffi
t

p
, or unbound, and

move as Ai
ffiffi
t

p
with A1 ≠ A2 [Figs. 2(a), 2(c)]. Their state

can be represented in a phase diagram [Fig. 2(b)]. Upon
approaching the unbinding transition from above and
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below, the same behavior as in the antisymmetric case
is found [Fig. 2(d)]. Interestingly, in the bound state the
“velocity” of the probes depends only on the sum of
the forces, f1 þ f2; when they unbind, the velocity of the
center of mass decreases rapidly [Fig. 2(e)]. Finally, N
driven probes can also be bound and move as a whole
[Fig. 3(c)] or separate into two groups [Fig. 3(e)].

We have run numerical simulations of other systems,
focusing on the model systems used in experiments.
Systems implementing the single-file property have been
realized with colloids confined to a narrow channel either
printed in the substrate [9,13], or generated with scanning
optical tweezers [12]. The colloids either interact through
a magnetic dipolar interaction, as 1=r3, where r is the

FIG. 2. Two probes submitted to arbitrary forces. (a) Two probes located at X1 < X2 are submitted to arbitrary forces f1 and f2.
(b) Two examples of trajectories for f1 ¼ 0, f2 ¼ 1 (blue) and f1 ¼ −1, f2 ¼ 2 (red). (c) Phase diagram: bound (filled circle) and
unbound (circle) configurations, the line is the theoretical prediction (12), (13). (d) Separation in the bound (filled circle) and unbound
(filled square) regimes for F ¼ f1 þ f2 ¼ 1 as a function of the force difference Δf ¼ f2 − f1; Δf� is the critical force difference
[Eqs. (12), (13)]. (e) Motion of each probe, and of the center of mass (c.m.) for the same parameters.

FIG. 1. Two probes submitted to opposite forces in a single file system. (a) General scheme: two probes (red) in a single file system
(bath particles in grey) initially at a distance L are submitted to opposite forces ∓ f. (b) Possible moves and transition rates in the SEP
with biased probes (red). (c) Example of trajectories for f ¼ 0.5 (blue) and f ¼ 1.5 (red), for ρ∞ ¼ 0.5. The dashed black lines are the
theoretical predictions. Distances are given in units of a and forces in units of kBT=a. (d) Rescaled trajectory of the probe 2 in log-log
scale for f ¼ 0.5, Pðρ∞Þ≃ 0.69, 1.5, and L ¼ 10, 20, 50, 100, 200, 500 (red to blue). (e) Separation of the probes in the bound
[f < Pðρ∞Þ, filled circle] and unbound [f > Pðρ∞Þ, filled square] regimes. Points are the results of numerical simulations and the lines
are the theoretical results (6) and (7).
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interparticle distance [9], or behave as hard rods, as in the
Tonks’ gas [13]. We simulated these two systems with an
overdamped dynamics, inserting two probes submitted to
opposite forces, and found the same phenomenology as in
the SEP (Fig. 4).
To account for these observations, we start from the

hydrodynamic description of the SEP introduced in
Refs. [14,15] to investigate the response of a single probe
to a constant force. Notably, this approach gives the exact
result for the mean position of the probe and the density
profile of the bath particles at long time. The starting point
of the analysis is that the bath density ρðx; tÞ has a diffusive
behavior [22],

∂ρ
∂t ðx; tÞ ¼ D

∂2ρ

∂x2 ðx; tÞ; ð1Þ

where the diffusion coefficient is D ¼ a2=ð2τÞ. The probe
i, located at XiðtÞ in average, acts as a moving wall

that imposes a no-flux boundary condition, namely,
Dð∂ρ=∂xÞðX�

i ; tÞ ¼ −ρðX�
i ; tÞðdXi=dtÞ.

The several probes situation is conveniently analyzed
by first revisiting the single probe case. Within the hydro-
dynamic approach, it has been shown [14,15] that the
densities immediately left and right of a probe moving as

XðtÞ ∼ A
ffiffi
t

p ð2Þ
are given by

ρðX�Þ ¼ ρ∞g

�
� A

2
ffiffiffiffi
D

p
�
; ð3Þ

where gðuÞ ¼ ½1 − ffiffiffi
π

p
u expðu2ÞerfcðuÞ�−1. The system of

equations is closed with a relation between the velocity of
the probe, the force on the probe and the densities on each
side of the probe [14,15]. We show in the Supplemental
Material [20] that this relation can actually be interpreted as
a force balance,

f ¼ P½ρðXþÞ� − P½ρðX−Þ�; ð4Þ
which involves the pressure of the SEP [23],

PðρÞ ¼ −
kBT
a

logð1 − ρÞ: ð5Þ

Using Eqs. (3), (4) gives back the implicit equation for A
given in Refs. [14,15], which can be solved numerically.
As we proceed to show, this new interpretation allows a
direct generalization to the case of several driven particles.
Moreover, it underlines the robustness of our approach,
which can be applied to other single-file systems.
We turn to the situation where two probes are submitted

to opposite external forces, f2 ¼ −f1 ¼ f (Fig. 1). First,
we focus on the case where the probes remain bound,
meaning that their positions converge, and we define X∞

i ¼
limt→∞XiðtÞ [Figs. 1(c), 1(d)]. In this case, the density
between the probes is uniform and we denote it by ρ1, while

FIG. 3. Five probes submitted to arbitrary forces (a). (b),(c) Simulated trajectories and theoretical predictions (black dashed lines)
for forces ð1; 1;−1;−1; 1Þ (b) and ð1;−1;−1; 1; 1Þ (c). (d) Two probes phase diagram for ρ ¼ 0.5; it shows that all the possible
divisions remain bound in case b (filled circle) and that the groups (1,2,3) and (4,5) unbind in case c (circle).

FIG. 4. Two probes submitted to opposite forces in the Tonks’
gas (a) and the dipolar gas (b). Trajectory of the probe 2 in the
Tonks’ gas of hard rods (a) and in the dipolar gas with 1=r3

interactions (b) at ρ∞ ¼ 0.2, for different values of the force f
(solid lines). In the Tonks’ gas, Pðρ∞Þ ¼ 0.25; in the dipolar gas,
Pðρ∞Þ≃ 0.265. The dashed black lines are the theoretical
predictions [20].
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the density outside of the probes is the density at infinity,
ρ∞. The density between the probes is given by Eq. (4),
Pðρ1Þ ¼ Pðρ∞Þ − f, and allows one to compute the equi-
librium distance between the probes, L∞ ¼ X∞

2 − X∞
1 ¼

Lρ∞=ρ1 [Fig. 1(d)]. This bound state is observed as long as
the force f does not exceed the pressure of the outer gas,
Pðρ∞Þ. As this pressure is approached from below, the
distance between the probes diverges as [Fig. 1(e)]

X∞
2 − X∞

1

L
∼

f→Pðρ∞Þ−
ρ∞P0ð0Þ
Pðρ∞Þ − f

¼SEP kBTρ∞
a½Pðρ∞Þ − f� ; ð6Þ

where P0ðρÞ denotes the derivative of the pressure with
respect to ρ.
When the forces overcome the pressure of the gas, the

probes unbind and move apart as X2ðtÞ ¼ −X1ðtÞ ∼ A
ffiffi
t

p
,

and the density between the probes decays to zero. The
force balance (4) for the probe 2 together with Eq. (3) give
f ¼ P½ρ∞gðA=½2

ffiffiffiffi
D

p �Þ�, which is an implicit equation for A
[Fig. 1(d)]. As f approaches Pðρ∞Þ from above, A decays
and [Fig. 1(e)]

X2ðtÞffiffiffiffiffiffi
Dt

p ∼
t→∞

f→Pðρ∞Þþ

2ffiffiffi
π

p f − Pðρ∞Þ
ρ∞P0ðρ∞Þ

ð7Þ

¼SEP 2ffiffiffi
π

p 1 − ρ∞
ρ∞

a½f − Pðρ∞Þ�
kBT

: ð8Þ

Equations (6)–(7) quantify the behavior of the system at
the vicinity of the unbinding transition, which occurs at
f ¼ Pðρ∞Þ. However, they leave aside the important
question of what happens at the transition. From
Eqs. (6)–(7), we may expect the separation to evolve in
time as a power law, X2ðtÞ ¼ −X1ðtÞ ∼ Ctγ, with a different
exponent γ ∈ ð0; 1=2Þ. Under this assumption, the density
ρ1ðtÞ between the two probes is uniform and
ρ1ðtÞ ∼ Lρ∞=ð2CtγÞ. The density in front of the probe 2
can be shown to be given by ρ(X2ðtÞþ; t) − ρ∞ ∝ ρ∞Ctγ−

1
2.

Using Eqs. (4), (5) leads to X2ðtÞ ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LP0ð0Þ=P0ðρ∞Þ

p
t1=4

[20], and the exact expression is

X2ðtÞ ∼
t→∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
π

p
Bð1=2; 1=4Þ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0ð0ÞL
P0ðρ∞Þ

s
ðDtÞ1=4 ð9Þ

≃SEP0.82 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ρ∞ÞL

p
ðDtÞ1=4; ð10Þ

where B is the beta function [Fig. 1(d)].
It is noteworthy that the dependence of the separation

between the probes on the time t and the initial separation L
is constrained by the diffusive scaling of the bath in the
three regimes. Indeed, the position of the second probe can
be written in all regimes as

X2ðtÞ ¼ LψðDt=L2Þ; ð11Þ

with ψðuÞ ∼ 1 if f < Pðρ∞Þ, ψðuÞ ∼ u1=4 if f ¼ Pðρ∞Þ and
ψðuÞ ∼ ffiffiffi

u
p

if f > Pðρ∞Þ [Fig. 1(d)].
The considerations above can be extended to the case

where the two probes are submitted to arbitrary forces f1
and f2 [Fig. 2(a)]. When the probes are bound, the density
between them becomes uniform and the force balance (4)
shows that their displacement is A

ffiffi
t

p
, where A is the same

as for a single probe submitted to the force F ¼ f1 þ f2
(Figs. 2(c), 2(e), [20]). Unbinding occurs when the forces
overcome the pressure of the gas at the left of probe 1 and at
the right of probe 2, i.e., when f1 ¼ f�1ðAÞ and f2 ¼ f�2ðAÞ
[Fig. 2(c)] with

f�1ðAÞ ¼ −P
�
ρ∞g

�
−

A

2
ffiffiffiffi
D

p
��

; ð12Þ

f�2ðAÞ ¼ P

�
ρ∞g

�
A

2
ffiffiffiffi
D

p
��

: ð13Þ

After unbinding, the probes move as XiðtÞ ∼ Ai
ffiffi
t

p
,

A1 < A2, with f1 ¼ −P½ρ∞gð−A1=½2
ffiffiffiffi
D

p �Þ� and f2 ¼
P½ρ∞gðA2=½2

ffiffiffiffi
D

p �Þ� [Figs. 2(d), 2(e)]. The displacement
of the center of mass does not depend on Δf ¼ f2 − f1 as
long as the probes are bound, but it decreases rapidly when
they unbind [Fig. 2(e)].
Our results show that two probes that are bound can be

seen as a single one, and this statement directly generalizes
to N probes [Fig. 3(a)]. Moreover, when the ensemble of N
probes separates into two groups moving away from each
other, each group can be seen as a single probe. It is actually
not possible to have more than two groups, except if there is
a group of probes on which the total force is zero: a probe
located between two separating probes sees a bath of
vanishing density, and thus moves freely in the direction
of its force, until it meets the left or right probe. To
determine whether the N probes remain bound, the two
probes analysis can be applied to the N − 1 possible
divisions of the N probes into two groups. The set of
forces to consider are ðFi

1; F
i
2Þ, where Fi

1 ¼
P

i
j¼1 fj and

Fj
2 ¼

P
N
j¼iþ1 fj, for 1 ≤ i < N. If all the points ðFi

1; F
i
2Þ

are in the bound region of the phase diagram in Fig. 2(b),
the N probes remain bound [Figs. 3(b), 3(c)]; otherwise,
they split for the index i that maximizes ΔFi ¼ Fi

2 − Fi
1

[Figs. 3(d), 3(e)].
Our analytical results are in excellent agreement with

numerical simulations. In fact, our results are expected to
be exact because (i) the hydrodynamic approach that we
used has been shown to give exact results for the mean
position of a single probe under a constant force at long
times [14,15], and (ii) the motion of several probes that are
bound can be computed exactly when the density is close to
1 using an expansion in the number of vacancies similar to
the one used in Ref. [24], and confirms our results.

PHYSICAL REVIEW LETTERS 120, 070601 (2018)

070601-4



We have provided exact results for the SEP, and have
shown that the unbinding transition is robust, as it also
takes place in continuous models that represent experi-
mental systems [9,13]. Thus, the unbinding transition
should be observed if driven particles are inserted in these
systems, for instance, dielectric colloids manipulated with a
laser beam to simulate an external force [25,26]. Motile
particles can also simulate an external force; for example,
a few colloidal rollers, which are used as a model active
matter system [27] could be incorporated in narrow
channels with passive colloids. At a larger scale, a mixture
of active and passive vibrated disks can be confined to a
circular channel [28–30].

The work of O. B. is supported by the European
Research Council (Grant No. FPTOpt-277998). We
acknowledge discussions with D. Bartolo and S.
Ciliberto about the possible experimental tests of our
theoretical results.
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