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Everyday experience confirms the tendency of adhesive films to detach from spheroidal
regions of rigid substrates—what is a petty frustration when placing a sticky band aid
onto a knee is a more serious matter in the coating and painting industries. Irrespective
of their resistance to bending, a key driver of such phenomena is Gauss’ Theorema
Egregium, which implies that naturally flat sheets cannot conform to doubly curved
surfaces without developing a strain whose magnitude grows sharply with the curved
area. Previous attempts to characterize the onset of curvature-induced delamination,
and the complex patterns it gives rise to, assumed a dewetting-like mechanism in which
the propensity of two materials to form contact through interfacial energy is modified
by an elastic energy penalty. We show that this approach may characterize moderately
bendable sheets but fails qualitatively to describe the curvature-induced delamination
of ultrathin films, whose mechanics is governed by their propensity to buckle and
delaminate partially, under minute levels of compression. Combining mechanical
and geometrical considerations, we introduce a minimal model for curvature-induced
delamination accounting for the two buckling motifs that underlie partial delamination:
shallow “rucks” and localized “folds”. We predict nontrivial scaling rules for the onset
of curvature-induced delamination and various features of the emerging patterns,
which compare well with experiments. Beyond gaining control on the use of ultrathin
adhesives in cutting-edge technologies such as stretchable electronics, our analysis is
a significant step toward quantifying the multiscale morphology that emerges upon
imposing geometrical and mechanical constraints on highly bendable solid objects.

geometric incompatibility | adhesion | thin sheets

The simplest way to form a composite material, simply sticking a layer of one material to
another, is encountered in everyday life from sticky notes to a parent placing a band-aid
on a child’s knee. Normally one does not consider whether such an operation is at all
possible. However, when at least one of the two objects to be joined is curved, adhesion
is no longer guaranteed. For example, when a relatively thick, flat plate is adhered to a
cylindrical substrate, the energetic penalty associated with detaching from the substrate is
small enough to be overcome by the elastic (bending) energy of the plate that is released
by detachment (1) and leads to the failure of the coating or delamination. For sufficiently
thin plates, this bending energy is insignificant and adhesion proceeds as expected.

A qualitatively different picture emerges when the substrate is doubly curved (i.e., has
two principal curvatures κ1,2 6= 0, Fig. 1A). While very thin sheets are able to bend easily,
stretching is much more difficult and so Gauss’ Theorema Egregium (2) limits them to
maintaining their initial Gaussian curvature, K sheet

G . If the Gaussian curvature of the
substrate K subs

G = κ1κ2 6= K sheet
G , adhesion between the two frustrates the deformable

object (sheet). If the sheet nevertheless adheres perfectly to the surface, it suffers a strain
that scales with the contact area and hence an elastic energy density that is quadratic in the
sheet’s area. Consequently, it has been commonly assumed that a thin sheet delaminates
from a spheroidal-shaped substrate when its size reaches a threshold value at which the
penalty of this strain-induced elastic energy exceeds the gain in adhesion energy. The
central result of our paper is that, while this “ideal delamination” scenario (which we
liken to dewetting) may characterize moderately bendable sheets, it does not apply for
highly bendable sheets. These are governed instead by “partial delamination” in which
localized “rucks” and “folds” appear. Crucially, partial delamination occurs for sheets that
are much smaller than is suggested by the hypothetical energy-based threshold and largely
suppresses the elastic energy penalty, thereby considerably increasing the net coverage of
spheroidal parts of the substrate.

The geometrical frustration resulting from a difference in Gaussian curvature occurs
when a flat sheet is deposited on a sphere, as is shown schematically in Fig. 1A and in
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Fig. 1. Illustrations of the geometric incompatibility of an intrinsically flat sheet adhering to a doubly curved object. (A) A circular, naturally flat, sheet of
radius W has Gaussian curvature Ksheet

G = 0 while a spherical substrate of radius R has Gaussian curvature Ksubs
G = �1�2 = 1/R2. (B) Delamination blisters

spontaneously form when a (flat) band-aid is adhered to a child’s (curved) knee. Panels C and D show more controlled realizations of this experiment in sheets
of large and small thicknesses, respectively. Image in C reprinted with permission from (3). Copyright (2011) by the American Physical Society.

a practical scenario in Fig. 1B. For the example shown in Fig. 1B,
this incompatibility leads to failure in the form of delamination
blisters forming around the periphery. While this is a minor
annoyance in the example of a band-aid applied to a curved
knee, in technological and scientific applications conformability
is key and so delamination is problematic (4–7). As a result, a
variety of techniques have been developed to overcome geometric
incompatibility ranging from modifying the substrate geometry
as in the Surface Force Apparatus (8, 9) to buffering the excess
area required to change the sheet’s shape (10) by either removing
material (7, 11, 12) or introducing sacrificial buckling elements
(13, 14).

Despite the broad significance of geometric incompatibility
for adhesion, there seems to be little detailed understanding of
when and how this incompatibility is expected to lead to failure
via delamination. The standard picture of delamination induced
by geometric incompatibility is due to Majidi and Fearing (15),
who observed that if a flat sheet (of radius W ) is forced to adhere
to a sphere of radius R, a strain of order ε ∼ K subs

G W 2
∼ W 2/R2

is induced. Perfect adhesion therefore induces an elastic energy
density Y (W /R)4, where Y = Et (with E the Young modulus
and t the sheet thickness) is the stretching modulus of the sheet.
Now, this elastic energy penalty can be avoided if the sheet retains
a planar shape by completely detaching from the substrate, at the
expense of paying an energetic penalty 0 per unit area of lost
contact.

Assuming the sheet is either fully adhered to the substrate
or fully delaminated from it, one may define a renormalized,
curvature-dependent adhesion energy density:

0∗ = 0 − c · Y (W /R)4, [1]

where c is a numerical constant that depends on the substrate
geometry; for example, c = 1/384 for a spherical substrate (16,
17). Eq. 1 underlies an elementary description of delamination
as a generalization of the standard dewetting transition (which
occurs as 0 → 0+), to “curvature-induced dewetting” (which

occurs as 0∗ → 0+). In this generalization, the sheet’s elastic
energy is simply viewed as an addition to the sheet–substrate
adhesion energy. In terms of the dimensionless parameters:

W̃ = W /R ; β = 0/Y, [2]

the curvature-induced dewetting scenario predicts that delami-
nation occurs when W̃ exceeds a critical value:

W̃dewet ∼ β
1/4. [3]

Although the curvature-induced dewetting mechanism does
capture the basic competition between adhesion and geometrical
constraints, considering 0∗, defined in Eq. 1, as the single pa-
rameter that determines the onset of delamination is problematic.
Indeed, treating adhesion and elastic energies as equivalent com-
petitors obscures the fact that the former is uniformly distributed
while the latter is distributed in a nontrivial and inhomogeneous
manner: Not only does the magnitude of strain vary significantly
with radial distance from the center, but the spatial structure
of its components is quite nontrivial. In particular, while the
inner part of the sheet is stretched both radially and azimuthally,
the periphery is stretched predominantly radially and becomes
azimuthally compressed when the sheet exceeds a critical size
(16, 17):

W̃comp ∼ β
1/2. [4]

Notably, for β � 1, W̃comp may be significantly smaller than
the delamination size W̃dewet predicted by the curvature-induced
dewetting mechanism, Eq. 3. Since the thinner a sheet is the
less compression it can accommodate before buckling, one may
expect that the onset of curvature-induced delamination in
sufficiently thin sheets is not correctly described by the single
parameter 0∗ but requires an explicit consideration of the strong
nonuniformity and anisotropy, and the consequent possibility
of anisotropic instabilities, similar to the radial wrinkling that
is prevalent in other examples of geometrically incompatible
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confinement problems (10, 18, 19). The possible relevance of
such a strongly anisotropic response to delamination is clear in
Fig. 1 C and D, which shows that delamination occurs via the
formation of radial blisters.

The main result of this paper is twofold. First, we present
experimental evidence (Fig. 2E) that the dewetting mechanism
underlying the threshold criterion Eq. 3 does not capture the
actual delamination threshold for highly bendable sheets—

instead, the scaling Eq. 4 is most appropriate for the thinnest
sheets studied. Second, we rationalize this observation by pre-
senting a partial delamination model that describes curvature-
induced delamination of highly bendable sheets and is strictly
different from the dewetting mechanism of ref. 15. We show
that partial delamination occurs by the formation of blisters that
exploit the low energetic cost of bending to relieve strain and
thereby suppress elastic energy in the sheet while maximizing
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Fig. 2. A–D: Images showing typical delamination patterns for a range of sphere sizes and sheet thicknesses (as summarized by the letters A–D in panel E). (E)
Initial presentation of experimental results showing the regions of (1/Y,W/R = W̃) parameter space for which smooth adhesion (filled symbols) or localized
delamination (open symbols) were observed. Contrary to previous suggestions, the delamination transition does not occur when W̃c = 3841/4�1/4

∝ (1/Y)1/4.
Instead, the theory presented in this paper suggests different regimes depending on the value of �/�3. (F ) Replotting the data of panel E as suggested by this
theory shows a good collapse of the data as well as the two distinct regimes predicted theoretically. The scaling prediction for �/�3

� 1, Eq. 15, is shown by
the dashed line and is observed even with moderate �/�3 . 102; the prediction for �/�3

� 1, Eq. 23, is shown by the dash-dotted line. In panels E and F ,
points are shown for a variety of sheet thicknesses, indicated by point color (see colorbar to the right), and material, indicated by shape: polyimide (diamond),
polycarbonate (upward-pointing triangles), polyvinylsiloxane (left-pointing triangles), and polystyrene (circles).
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its contact with the curved substrate. These blisters may be
either small-amplitude rucks or large-amplitude folds, depending
on the bendability of the sheet. Specifically, we identify a
“highly bendable” parameter regime, where partial delamination
is folds-based and the transition from a fully laminated state
is given by Eq. 4, and a “moderately bendable” parameter
regime, where partial delamination is mediated by rucks. In the
latter, the transition from a fully laminated state is described
by a novel scaling relation that interpolates between the lower
(compression-based) threshold Eq. 4 and the upper (dewetting-
based) threshold Eq. 3. This theory allows the experimental data
points of Fig. 2E to be collapsed onto a master curve (Fig. 2F )
and recovers the expected scaling regimes.

1. Raw Experimental Results

As a first indication that the energetic picture is not the full story,
we present experimental results that interrogate the transition
from smooth adhesion to delamination for circular sheets of
radius W and thickness t and a sphere of radius R. In these
experiments (Materials & Methods and SI Appendix), sheets with
thickness t ∈ [100 nm, 104 μm] are deposited from floating on
a water bath onto the sphere. After the system dries, the sheet is
observed to either be smoothly adhered (represented by a filled
point in Fig. 2E) or be partially delaminated (an open point in
Fig. 2E).

As expected, the results of this experiment (summarized in
Fig. 2E) show that above a critical radius ratio W̃ > W̃c , the sheet
delaminates (modulo some imperfection-induced noise close to
the transition). However, the experimental data shown in Fig. 2E
do not show the scaling W̃c ∼ β

1/4 predicted by the curvature-
induced dewetting mechanism of Eq.3: the only plausibly power-
law behavior that we observe appears to be W̃c ∝ Y −1/2

∼ β1/2,
reminiscent of Eq. 4, and this scaling is observed only in the
sheets with the smallest values of Y .

2. The Onset of Blistering

A. The Importance of Compression. We begin our reexamina-
tion of the theory by taking a step back to consider the stress state
within the elastic film as the sheet radius W changes, under the
assumption that the sheet remains perfectly attached to the sphere
and hence axisymmetric. In this case, the vertical deformation of
the sheet is:

ζ = −r2/(2R), [5]

(from the parabolic approximation to the sphere’s surface, valid
when W /R � 1). The in-plane deformation and consequent
stress within the laminated film are caused by the Gaussian
curvature (∼ 1/R2), imparted by the out-of-plane deformation,
as well as the radial tensile load T = γsu−v applied by the
substrate–vapor interfacial tension (17, 20).

The stress profile within the sheet can then be readily calculated
from this displacement and has been presented in related work
(16, 17). This calculation gives that the radial and hoop stresses
within the sheet induced by the deformation of Eq. 5 are

σrr = γsu−v +
Y

16R2

(
W 2
− r2) , [6]

σθθ = γsu−v +
Y

16R2

(
W 2
− 3r2) . [7]

We see that σrr > 0 throughout the sheet but also that the
minimum value of the hoop stress, σmin

θθ , is

σmin
θθ = σθθ (W ) = γsu−v −

YW 2

8R2 = Y

(
β
γsu−v

0
−

W̃ 2

8

)
,

[8]

while the radial displacement of the sheet’s edge, uaxi
r (W ), satisfies

uaxi
r (W )
W

=
σθθ (W )− νσrr(W )

Y
= (1− ν)β

γsu−v

0
−

1
8
W̃ 2.

[9]

Crucially, Eq. 8 determines the numerical prefactor in the
scaling (4), namely:

W̃comp = 23/2
(γsu−v
0

)1/2
β1/2, [10]

so that for W̃ > W̃comp, the hoop stress becomes compressive
at the edge of the sheet, σmin

θθ < 0. As we discussed in the
introduction, this scaling matches the experimentally determined
critical sheet size at the onset of delamination for the thinnest
elastic sheets, W̃c ∝ Y −1/2, as shown in Fig. 2E . However, we
also see that there is a numerical factor that depends on the
different surface energies in the problem: In general, γsu−v/0 6=
1 since the adhesion energy 0 = γsu−v + γsh−v − γsu−sh =
γsu−v(1 + cos θY ) (with γsh−v and γsu−sh the sheet–vapor and
substrate–sheet surface energies, respectively, and θY an effective
contact angle). For simplicity, we shall take γsu−v = 0 in what
follows, corresponding to γsh−v = γsu−sh or θY = π/2. (Versions
of the main results that follow are recorded in SI Appendix for
values γsu−v/0 6= 1.)

To understand how and when the appearance of compression
affects the onset of delamination, we begin by considering the
case in which the sheet has very little resistance to bending. In this
case, a recent study of the one-dimensional analog problem (21)
suggests that delamination blisters in highly bendable sheets take
the form of ‘folds’: the amplitude A is large in comparison with
the width of the blister λ (as shown in Fig. 3). A sheet coming into

core

stickon

fold ruck

Fig. 3. Schematic of a thin sheet attached to a sphere highlighting the
adhered core region (blue), delamination blisters (red) and adhered ribbons,
or “stickons,” between the blisters (green). Depending on the relative strength
of bending and adhesion in this problem, the delamination blisters may form
either folds or rucks (shown below the main figure). The length, `, of the
blisters, as well as the width w of a stickon region are also shown.
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contact with an adhesive substrate suffers a discontinuity in its
radius of curvature (22–24) proportional to the bendoadhesive
length (25) `ba = (B/0)1/2 where B ∝ Et3 is the bending
stiffness of the sheet. (Note that, in accord with the proposed
terminology that distinguishes “elastocapillary” and “bendocap-
illary” lengths (26), we call this length “bendoadhesive” rather
than “elastoadhesive” used by ref. 25.) Since a high-amplitude
fold is largely flat (Fig. 3), its width is determined by the radius
of curvature at the contact, i.e., λ ∼ `ba. In the axisymmetric
case, we similarly expect folds to be energetically favorable when
W̃ > W̃comp and the bending stiffness is sufficiently small. We
therefore define a third dimensionless group, that depends on the
bending modulus

ε =
B
0R2 =

(
`ba

R

)2
. [11]

Here, ε is a dimensionless bending stiffness and ε−1 characterizes
the degree of “bendability” of the adhesive film (18): sheets for
which ε−1

� 1, or R � `ba, are readily bent to a radius of
curvature R by adhesive forces.

Assuming that the blisters in a sheet delaminating from a sphere
are radially elongated and are hence locally one-dimensional,
adopting a similar fold shape, we now turn to understanding
when such folds are expected and how many of them should
form. This will also allow us to perform a consistency check of
the fold ansatz a posteriori and to make the notion of “bendable”
more precise.

B. The Formation of Folds. The key feature of a fold is that
the bending energy is localized close to the contact region and
in the loop—the majority of the arclength of the material is
simply uncurved (albeit vertical)—and so the bending energy
of a single fold of extent ` in the radial direction (Fig. 3) is
B`/`ba = (B0)1/2`. As a result the bending energy in n folds
(all of radial length `) is

U fold
bend ∼ n(B0)1/2`. [12]

As should be expected, U fold
bend penalizes the creation of more

folds (and hence blisters); to minimize this energy, the system
should have as few blisters as possible. However, forming a small
number of blisters is expensive in terms of strain energy because
the portion of the sheet that remains adhered still conforms
to the sphere; if there are fewer blisters, the attached ribbon-
like elements between the blisters (or ‘stickons’, Fig. 3) must be
wider and so be more highly strained. The strain energy per unit
area of a stickon of width w adhered to a sphere of radius of
curvature R is urib ∼ Yw4/R4 (15, 27); assuming that stickons
are wide compared to the blisters formed, w � λ, (i.e., most of
the sheet remains laminated to gain adhesion energy) we have
that w ∼ Wc/n close to onset. The total strain energy stored in
these ribbons, Ustrain = urib ×Wc`, is

Ustrain ∼
YW 4

c
n4R4 ×Wc`. [13]

(Note that there is still a strained, fully laminated core region,
but that this does not play a role in the selection of the number
of blisters that are formed.)

As expected, the energy Ustrain drives the system to have many
blisters, thereby competing with the bending energy U fold

bend to
determine the optimal number of folds

nfold ∼
Wc

R
(β2ε)−1/10

∼ (β3/ε)1/10, [14]

where we use the assumption that folds form in tandem with the
emergence of compression, i.e.,

W̃c ≈ W̃comp ∼ β
1/2, [15]

in the last equality in Eq. 14.
To understand when this regime is expected experimentally,

we note two conditions on the formation of folds. First, folds are
distinguished by being much taller than their width, i.e., A� λ.
To estimate the amplitude of folds, we denote the sheet length to
be wasted by these blisters by 1tot, so that A ∼ 1tot/nfold. The
fold ansatz is therefore valid provided that 1tot/nfold � `ba or

1tot

R
� (ε4β3)1/10. [16]

Second, and simplifying further our analysis by considering the
case ν = 0, we note that since folds form close to the onset
of compression in the sheet, their total arclength, 1tot, may be
estimated as 1tot ∼ |uaxi

r (W )|. Recalling that the underlying
assumption in the fold regime is that W̃c = W̃comp + δW̃
with δW̃ � W̃comp ∼ β

1/2, we can estimate |uaxi
r (W )/W | ∼

W̃comp δW̃ from Eq. 9, so that the inequality Eq. 16 becomes
W̃ 2

comp δW̃ � (ε4β3)1/10 or

(ε4β−7)1/10
� δW̃ � β1/2. [17]

(For other values of ν, a detailed calculation, given in SI Appendix,
shows that Eq. 17 holds regardless.) The separation of scales
in Eq. 17 is only possible if

ε � β3. [18]

(Note that to determine the conditions under which folds form
it was not necessary to evaluate δW̃ explicitly, and we hence have
not needed to calculate 1tot at all!)

Eq. 18 makes precise our earlier statements that folds are
expected when the bending stiffness of the sheet is sufficiently
small: the appearance of folds requires ε � β3 ≪ 1. We note
also from Eq. 14 that this high bendability regime corresponds
automatically to a large number of folds—just as a large number
of wrinkles is associated with the small cost of bending and,
consequently, little resistance to compression, this is also the case
for folds.

When ε & β3, the fold ansatz used above is no longer self-
consistent since it gives rise to folds for which the typical slope
A/λ . 1. If the slope of the delamination structures formed with
ε/β3

� 1 were indeed small, they would be more akin (28–30)
to rucks in rugs (31, 32), rather than the folds we have considered
so far. We therefore turn to consider rucks.

C. The Formation of Rucks. The simplicity of the fold case
stems from the separate role of mechanics and geometry in
their construction: the product A · nfold of the amplitude and
number of folds is given by the arclength 1tot that is to
be wasted (which is imposed by confining the sheet onto a
sphere), whereas the fold’s width is determined by an energetic
balance (which leads to λ ∼ `ba, independently of 1tot).
Unlike a fold, a small-slope ruck of height A and width
λ � A does not exhibit such a “decoupling” of geometry
and mechanics. Approximating a ruck by the sinusoidal profile
ζ (x) ≈ 1

2A
[
1+cos(2πx/λ)

]
, the arclength “wasted” by the ruck

is 1 =
∫ λ/2
−λ/2

(
[1 + ζ ′(x)2]1/2 − 1

)
dx ∼ A2/λ. However, for

a ruck, A and λ cannot be chosen independently: A local force
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balance (22) or variational arguments (23, 24) reveals that these
two lengths are constrained by the requirement that the radius
of curvature of the blister at the delamination point matches
the bendoadhesive length (22, 23), `ba. This condition gives that
λ2/A ∼ `ba, which, combined with the wasted length constraint,
gives

λ ∼ 11/3`
2/3
ba , A ∼ 12/3`

1/3
ba . [19]

These scalings have been derived previously in the context of
the “sticky elastica” problem (24) in which a blister with a given
wasted length 1 is formed and its dimensions are measured.
Unlike the sticky elastica problem, however, the length to be
wasted in each delamination blister is not controlled here: While
Eq. 9 implies a global constraint for the total amount of length
that must be wasted, 1tot, there is, as yet, no constraint on
the number of blisters that will form, each wasting a length
1 = 1tot/n.

Anticipating that the ruck ansatz will be the appropriate
(i.e., self-consistent) one for moderately bendable sheets (which,
based on the fold case, should correspond to ε/β3

� 1), we
also expect that the threshold sheet size for delamination will be
well beyond the critical size at which a hoop compression first
develops, i.e., that W̃c � β1/2. From Eq. 9, we therefore have
that |ur(Wc)| ∼ RW̃ 3

c . Our working hypothesis is that, upon
delamination, this excess length is all wasted by buckling, so that

1tot ≈ ur(Wc) ∼ RW̃ 3
c . [20]

We therefore repeat the energetic balance argument that allowed
us to determine the number of folds in the highly bendable limit:
as before, bending energy seeks to form as few rucks as possible,
while the strain in the laminated portions of the sheet drives it
to form as many as possible. The important difference with the
earlier analysis of folds is that the bending energy within a ruck
is distributed all along its arclength; we therefore have that the
bending energy of all n rucks is

U ruck
bend ∼ n× B(A/λ2)2

× λ` ∼ 0n2/31
1/3
tot `

2/3
ba `. [21]

The strain energy stored in the laminated portions of the sheet,
the stickons, is (in scaling terms) independent of the form that
the delamination blisters take, so that Eq. 13 still holds. We can
then determine that the optimal number of rucks is

nruck ∼ (β3ε)−1/14Wc

R

(
1tot

Wc

)−1/14
∼ (β3ε)−1/14W̃ 6/7

c .

[22]
At this stage, an important difference with the fold case

emerges: we do not a priori know the value of W̃ at which
ruck-like delamination blisters will emerge, and so we cannot
use Eq. 22 to determine nruck in terms of ε and β. Instead,
we determine the threshold W̃c by the standard buckling
criterion, i.e., by equating the residual hoop compression in the
delaminated state, σres ∼ B/λ2 with λ given by Eq. 19 (ref. 33)
and the hoop compression of the axisymmetric (laminated)
state, |σmin

θθ | ∼ Y W̃ 2, which we evaluate from Eq. 8, recalling
that W̃c � β1/2 for rucks. This buckling criterion yields the
delamination-into-rucks threshold:

W̃c ∼ (β3ε)1/12. [23]

We note that the threshold in Eq. 23 reproduces the fold
scaling Eq. 15, i.e., W̃c ∼ β1/2, as ε/β3

↘ 1, while for

ε/β3
� 1 the onset for delamination into rucks occurs at W̃c �

β1/2. Similarly, we note that when ε = O(1), Eq. 23 recovers
the prediction of the upper bound Eq. 3 that delamination is
favorable when W̃ & β1/4.

As a final consistency check, we note that the aspect ratio of
delamination rucks at onset is

A
λ
∼

(
1

`ba

)1/3
∼

(
1tot/n
`ba

)1/3
∼

(
β3

ε

)1/12

. [24]

As expected, for ε � β3, the aspect ratio of the blisters A/λ� 1
and our assumption of small-slope rucks (rather than large-slope
folds) is indeed self-consistent.

3. Experimental Measurements of Onset

Combining the two predictions Eq. 15 and Eq. 23, we have that
the critical radius at the onset of delamination is predicted to
scale with ε and β according to

W̃c ∼

{
β1/2 ε � β3,
(εβ3)1/12 β3

� ε � 1.
[25]

We note that these two results may alternatively be written:

W̃c

β1/2 ∼

{
1 ε/β3

� 1,
(ε/β3)1/12 ε/β3

� 1.
[26]

Since this form presents different results in terms of the effective
bendability of the sheets, ε/β3, it is a useful one for reconsidering
the experimental data presented in Fig. 2E, to which we now turn.

As noted already in the introduction, a first experimental
indication of the importance of partial delamination is exhibited
by the data for the thinnest sheets shown in Fig. 2E and is
consistent with the ε-independent scaling of the delamination
threshold for sufficiently small ε (first line in Eq. 25). To test the
model predictions beyond this ultrathin regime, Fig. 2F shows
the same data as Fig. 2E replotted with the two axes rescaled
according to Eq. 26. Since the sphere’s curvature as well as the
elastic moduli and thicknesses of the sheets are known at high
precision, the only fitting parameter used in Fig. 2 is γsu−v = 0,
which has been assumed to be the same for all sheet materials
used. In fact, while γsu−v is constant in our experiments (which
use the same polycarbonate spheres),0 is expected to vary slightly
for the different sheet materials. Our theory suggests that γsu−v
controls the plateau for highly bendable sheets, while 0 controls
the collapse in the moderately bendable regime; while we might
therefore expect some imperfections in the collapse in this regime,
our experimental results do not suggest significant variation in 0
between materials.

Beyond the experimental support for the predicted scaling
exponent in the ruck-based regime Eq. 23, we emphasize that
the mere collapse of data exhibited in Fig. 2F confirms that the
threshold size for curvature-induced delamination of thin films
is governed by an “effective bendability” parameter, ε/β3

∝

BY 3/04R2, that depends in a rather nontrivial manner on both
bending and stretching moduli of the sheet, as well as the adhesion
parameter and substrate curvature. We also note that the plateau
in W̃c corresponds to the power-law regime evident in Fig. 2E but
is now reduced to a smaller relative interval because the rescaling
used in Fig. 2F highlights instead the ε-dependent threshold
of the rucks-based regime. Notably, the plateau is observed
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with ε/β3 finite but large (ε/β3 . 102), rather than strictly
ε/β3

� 1; this indicates the presence of a large numerical
prefactor that cannot be determined by our scaling analysis.

The features of the experimental data as plotted in Fig. 2F
are nontrivial tests of the presented theoretical picture. However,
another useful comparison with experiments comes from the
aspect ratio of the delamination blisters, measured near the edge
of the sheet, in the ruck regime. (This was measured in the case
of rucks using an optical interference technique, described in SI
Appendix, that cannot resolve the large slopes of folds.) These
measurements are presented in Fig. 4A and are also consistent
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Fig. 4. Properties of delamination blisters beyond onset. (A) The experi-
mentally measured aspect ratio of delamination blisters in the ruck regime,
showing that experiments are consistent with the scaling for aspect ratio of
rucks given in Eq. 24 and shown by the dash-dotted line. Here, aspect ratios
are determined from optical interference (open points) and profilometry
(closed point) which gives the maximum amplitude, Amax, and the full width
at half maximum, `1/2; symbols are used as in Fig. 2 to show sheet type and
thickness. (B) The spatial distribution of the fold number,n. Here, experiments
are performed with PS sheets (filled symbols) and PC sheets (open symbols)
with the color bar encoding the value of �/�3. According to the theory, Eq. 29,
when plotted in this way bluer/darker points should lie closer to the linear
scaling expected for folds, while yellower/lighter points should lie closer to
the 6/7 exponent expected for rucks. The experimental results are largely
consistent with the theory and suggest that the exponent of spatial variation
is larger for smaller �/�3. Moreover, the rescaled data show a reasonable
collapse when compared with the raw data (inset).

with Eq. 24 and hence the theoretical picture as a whole.
Note, however, that these experiments were not performed “at”
threshold but at some distance beyond it. It is therefore natural
to consider the problem of what happens beyond the initial
threshold a little further.

4. Beyond Threshold: Spatial Structure of Folds

The argument so far has focussed on the behavior at the onset
of the delamination instability. However, similar arguments can
be used to understand what the desired spatial structure of the
fold and ruck pattern might be beyond threshold. Provided that
the radial position r is large compared to the blister width, r �
λ, and that the cost of changing the number of delamination
blisters may be neglected, the same arguments used to derive the
number of blisters at onset can be repeated with Wc replaced
by r. (Predictions for the spatial variation of other properties of
the blister pattern, such as the blister amplitude and width could
then be inferred from these results together with the wasted
length constraint.) By making this substitution in Eq. 13 and
minimizing the combination of this and the bending energy
Eq. 12 by varying n(r), we find that

nfold ∼
r
R

(β2ε)−1/10. [27]

In the ruck case, repeating the replace and minimization
procedure on Eqs. 13, 20 and 21 gives

nruck(r) ∼ (εβ3)−1/14
( r
R

)6/7
. [28]

(As should be expected of these generalizations, Eqs. 27 and 28
reduce to Eqs. 14 and 22, respectively when r→ W̃cR.)

We see that the evolution of mode number of instability with
radial position, r, depends on whether that instability takes place
via folds or rucks—compare the linear scaling with radial position
r of Eq. 27 and the sublinear scaling with r of Eq. 28. These two
scalings can be written in terms of common variables as:

n
(
β3

ε

)1/10

∼


r
R

(
β

ε2

)1/10
ε � β3,[

r
R

(
β

ε2

)1/10
]6/7

ε � β3.
[29]

The predictions of Eq. 29 are compared with experimental re-
sults in Fig. 4B. Points with larger values of ε/β3 (paler/yellower
points) are consistent with the sublinear scaling expected for
rucks, while those with smaller values of ε/β3 (darker/bluer
points) are consistent with the linear scaling expected for folds.
This consistency with the prediction of Eq. 29 suggests that
the energetic cost of changing the number of folds or rucks
is negligible. We note that a similar feature has been shown
to characterize also wrinkle patterns, whereby a “microscopic”
wavelength is determined by local energy considerations, and
its value may vary smoothly across a confined sheet (33).
The collapse of our experimental data shown in the main
portion of Fig. 4B shows two further noteworthy features: First,
while the exponents of the two behaviors are ostensibly close
(6/7 versus unity), the associated prefactors seem to be very
different, separating the ruck and fold behaviors; second, the
steep transition region between the two behaviors suggests that
the central regions of highly bendable sheets may form rucks,
rather than folds.

PNAS 2023 Vol. 120 No. 12 e2212290120 https://doi.org/10.1073/pnas.2212290120 7 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 7
8.

20
1.

19
9.

75
 o

n 
M

ar
ch

 1
7,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
78

.2
01

.1
99

.7
5.

https://www.pnas.org/lookup/doi/10.1073/pnas.2212290120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2212290120#supplementary-materials


5. Conclusions

We have shown that the threshold size W̃c above which a
bendable sheet delaminates from an adhesive spherical substrate
is not determined merely by the adhesion strength and stretching
modulus, as has been supposed previously (3, 15, 34, 35). Instead,
there is a strong effect of the bending modulus underlying the
nontrivial dependence of W̃c on the two-dimensionless groups
β and ε that is given in Eq. 25.

In particular, we have shown that there are two modes through
which partial delamination allows the sheet to expel excess area,
relieving strain while maximizing contact area. When ε/β3

� 1
(or, equivalently, 0 � Y

√
t/R), the sheet delaminates from the

sphere by forming many large-slope folds, while for ε/β3
� 1

(i.e., 0 � Y
√
t/R), delamination occurs via small-slope rucks.

Despite the differences in the morphology of partial delamination
patterns, in both cases, the onset of instability occurs for sheets
that are significantly smaller than the previously presented “upper
bound” W̃dewet ∼ β

1/4, which was obtained by incorporating the
total elastic energy into the standard dewetting criterion for two
phases (15).

The key difference between the previously identified upper
bound on the size of sheets that can conform perfectly to a sphere
and our results arises from the fact that W̃dewet does not take
into consideration the inhomogeneous, anisotropic distribution
of strain in the laminated state, and the consequent presence of
compression even for rather small sheet sizes W̃comp < W̃ �
W̃dewet, where W̃comp ∼ β1/2, Eq. 15. Indeed, the emergence
of fold and ruck patterns follows directly from the tendency of
a thin sheet to maximize adhesion by “trading” an energetically
expensive strain with energetically cheap bending. This principle
is analogous to the one underlying wrinkle patterns in sheets
confined to curved deformable substrates (19, 33, 36, 37); the
morphological complexity of partial delamination patterns in
comparison to their wrinkle counterparts follows from the binary
(nonanalytic) nature of the adhesion energy, which is insensitive
to the deflection amplitude.

The collapse of the data of Fig. 2E that is exhibited in
Fig. 2F includes measured threshold sizes of circular films made
of various materials and a broad range of thicknesses and therefore
indicates the robustness of the partial-delamination model. To
further stress this point, we highlight two key assumptions
underlying our model. First, a central, yet thus far implicit,
assumption is that deformation of the sheet is determined by
minimization of the system’s energy (composed of interfacial
and elastic contributions). While we cannot totally rule out the
presence of irreversible processes, most notably sheet–substrate
friction, which would hinder the approach of the system to its
optimal configuration, the agreement with the predicted scaling
laws suggests that any deviations from the predicted partially
delaminated energy minimum are small (in comparison to the
energetic gain relative to a fully laminated state). Second, another
assumption is the rigidity of the substrate. Indeed, it has been
argued that if a spherical substrate is sufficiently deformable,
strain in the laminated sheet may be reduced considerably by
flattening the substrate, rather than the sheet delaminating from
the substrate, pushing the delamination threshold beyond Eq. 3.
Crucially, the critical Young’s modulus of a substrate below which
such a nonrigid response is expected can be estimated (17) as
Ecrit

subs ∼ 03/4Y 1/4/t ∼ 10 MPa, which is at least two orders
of magnitude softer than the modulus of the substrates used
experimentally here.

We have seen that sheets do not conform perfectly to a spherical
substrate once their lateral size increases beyond a limit. In
applications that involve a sheet (approximately) conforming to a
doubly curved substrate, it is nevertheless of interest to determine
the extent to which some delamination is minor: Does the sheet
remain largely conformed to the substrate? We therefore define
the “conformability” of the sheet to the sphere, C(r), as the
proportion of the infinitesimal annulus [r, r + δr] that is covered
by the sheet, i.e.,

C(r) = 1−
n(r)λ(r)

2πr
. [30]

Using the results already given we have that the delaminated
proportion, D(r) = 1− C(r) is

D(r) ∼
{
(ε2/β)1/5 ε � β3

� 1,
(ε2/β)1/7(r/R)4/7 β3

� ε � 1.
[31]

The above expressions show three desirable features of the
emergence of folds in highly bendable sheets for uniform
conformation: C → 1 in the (singular) infinite bendability limit
ε → 0 (i.e., conformation becomes asymptotically perfect in this
limit), D(r) is independent of r, and, throughout this regime,
D . β. In contrast, the conformation obtained by rucks is
nonuniform and less effective in comparison to folds.

We now briefly consider the adhesion of graphene to a spheri-
cal substrate, as might be desired in a Surface Force Apparatus, for
example. Taking values typical for graphene of Y ∼ 400 N m−1

(38) and bending energy B ∼ 1 eV ∼ 10−19 J (39), together
with a radius of curvature typical of the Surface Force Apparatus,
R ∼ 1 cm, and an adhesive energy 0 ∼ 0.1 N m−1, we find
that β ∼ 2 × 10−5, ε ∼ 10−14 so that ε/β3

∼ 1, which is
sufficient for graphene to lie within the high bendability regime.
In particular, we expect that W̃c ∼ β1/2

∼ 5 × 10−3: sheets
of graphene adhered to a hemisphere of radius of curvature
1 cm will only adhere smoothly if their radius W . 50 μm.
This is a significantly more stringent constraint on the adhesion
of graphene to doubly curved surfaces than would have been
the case in the picture presented by the upper bound (15),
W̃dewet ' 700 μm. It may also explain why applications in which
graphene spontaneously adheres to curved substrates have been
observed to form delamination blisters (4) with a morphology
similar to the rucks and folds studied here.

The theory and experiments presented in this paper show that
the anisotropic and inhomogeneous response of thin elastic sheets
to compression manifests itself in both the macroscopic and the
microscopic behaviors of such sheets: Both large-scale features
such as the threshold between delamination and smooth adhesion
(not to mention conformability) and small-scale features like
the number of blisters can only be understood through a
proper understanding of these different responses. Moreover, this
understanding points the way to better control of conformability
in scenarios ranging from the humble band-aid to industrial
coatings and beyond.

Materials and Methods

Polystyrene sheets were fabricated by spin-coating polystyrene dissolved in
toluene, while sheets of Polyvinylsiloxane were obtained by spin-coating Z-Dupe
(Henry Schein); sheets of other materials were obtained commercially. Discs
were then cut from these sheets and floated at the surface of a bath of water;
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after placing a an Acrylic/Polycarbonate spherical cap beneath the floating
sheet, the water bath was gradually drained until the sheet was deposited on
the spherical cap. The system was then allowed to dry for at least 10 min before
the sheet was inspected to determine whether delamination had taken place
and the properties of any delamination blister pattern were measured. Further
details of the experimental procedure may be found in SI Appendix.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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