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Collective Damage Growth Controls Fault Orientation
in Quasibrittle Compressive Failure
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The Mohr-Coulomb criterion is widely used in geosciences and solid mechanics to relate the state of
stress at failure to the observed orientation of the resulting faults. This relation is based on the assumption
that macroscopic failure takes place along the plane that maximizes the Coulomb stress. Here, this
hypothesis is assessed by simulating compressive tests on an elastodamageable material that follows the
Mohr-Coulomb criterion at the mesoscopic scale. We find that the macroscopic fault orientation is not
given by the Mohr-Coulomb criterion. Instead, for a weakly disordered material, it corresponds to the
most unstable mode of damage growth, which we determine through a linear stability analysis of its
homogeneously damaged state. Our study reveals that compressive failure emerges from the coalescence of
damaged clusters within the material and that this collective process is suitably described at the continuum
scale by introducing an elastic kernel that describes the interactions between these clusters.
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In 1773, Charles-Augustin de Coulomb proposed his
celebrated failure criterion for materials loaded under shear
or compression [1]. He postulated that failure occurs along
a fault plane when the applied shear stress 7 acting on that
plane overcomes a resistance consisting of two parts of
different nature: a cohesion 7., which can be interpreted as
an intrinsic shear strength of the material, and a resistance
proportional to the normal pressure, o. This results in the
Mohr-Coulomb (MC) failure criterion:

7| = 7 + poy. (1)

Following the former work of Amontons [2], this depend-
ence upon pressure led Coulomb to call it friction, with u
the corresponding friction coefficient and ¢ = tan~! (1) the
angle of internal friction. As a consequence, faulting should
occur along the plane that maximizes the Coulomb’s stress
|z| — uoy. Its orientation with respect to the maximum
principal compressive stress is given by the MC angle
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This work led to the so-called Anderson theory of faulting
[3], which is widely used in geophysics to interpret the
orientation of conjugate faults [4] and the orientation of
faults with respect to tectonic forces [5]. In this theory, Oy
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is uniquely a function of the internal friction angle ¢ and
hence is independent of confinement and dilatancy.

Solid mechanics models of compressive failure generally
adopt the same point of view: fault formation is described
as a localization instability in the constitutive inelastic
response of the material [6,7]. As such, if the material
behavior follows the Mohr-Coulomb criterion, the fault
inclination observed at the macroscopic scale is expected to
follow the MC angle prediction (2).

However, important issues remain to be addressed
regarding the applicability of this theory. Even though
the MC criterion (1) describes accurately the failure
envelope of quasibrittle solids like rocks [8,9] and ice
[10,11], the ability of MC angle prediction (2) to capture
fault orientation is still debated [12,13]. In particular,
experiments have reported an increase of the fault angle
with the lateral confinement, which is incompatible with
the MC prediction [14-16]. Besides, while Coulomb’s
theory provides a simple instantaneous criterion for failure,
it says nothing about the process of damage spreading that
precedes it. It is now widely accepted that the compressive
failure of quasibrittle materials does not occur suddenly, but
instead involves the nucleation and growth of microcracks,
which interact and finally coalesce to form a macroscopic
fault [21-23]. It is not clear at all if this phenomenology
is compatible with the point of view that macroscopic
faulting emerges from a local instability in the material
constitutive response [3,6,7], nor with the assumption that
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fault orientation in materials that do follow the MC failure
criterion is given by the MC angle.

Damage spreading under compression and the progres-
sion towards macroscopic failure is well captured by
continuum damage models, wherein microcrack density
at the mesoscopic scale is represented by a damage variable
and is coupled to the elastic modulus of the material
[24-27] (Fig. 1). In these models, a failure criterion is
implemented at the local scale, that is, usually, the scale of
the mesh grid element. Material heterogeneity is accounted
for by introducing some noise in either the elastic modulus
or the local failure criterion. When the state of stress over a
given element exceeds this criterion, the level of damage of
this element increases, thereby decreasing its elastic modu-
lus. Long-range elastic interactions arise from the stress
redistribution initiated by the local drop in the elastic
modulus. This redistribution can induce damage growth in
neighboring elements and eventually trigger avalanches of
damaging events over longer distances. Such models have
been shown to reproduce many features of brittle com-
pressive failure, such as the clustering of rupture events and
the power-law distribution of acoustic events sizes prior to
the emergence of a macroscopic fault [24,28-30]. They are
thus relevant tools to study the process of damage locali-
zation that leads to failure and, in particular, the depend-
ence of the angle of localization of damage on the
parameters involved in the damage criteria.

Here, we use such a tool to investigate how the macro-
scopic fault emerges from the accumulation of microscopic
damage events and test commonly used models that describe
compressive failure as a local material instability [6,7]. In
particular, we simulate compression experiments of speci-
mens of an elastodamageable material that satisfy the MC
failure criterion at the mesoscopic scale and study the
inclination of the macroscopic rupture plane as a function
of the internal friction angle under different confinement
conditions. We show that the orientation of the simulated
fault is not given by the MC angle. Instead, we find that the
most unstable mode of damage growth, which is inferred
from a linear stability analysis at the specimen scale,
provides a good estimation of the fault orientation for weakly
heterogeneous materials. Our findings shed light on the
significance of elastic interactions and damage coalescence
on the fault formation during compressive failure of quasi-
brittle materials. It also suggests that the modeling strategy
that consists in damage localization from the homogenized
material response may be insufficient, but that this difficulty
may be overcome by addressing the stability of the damage
growth process at the macroscopic scale using the elastic
interaction kernel introduced in this study.

Following Refs. [26,28] and others, the model is based
on an isotropic linear-elastic constitutive law where the
elastic modulus,

E(d) = (1 - d)E°, (3)
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FIG. 1. Compressive test simulations. (a) The prescribed boundary
conditions are superimposed to a snapshot of the field of the level of
damage d simulated after peak load [timing indicated by the red
vertical linein (b)]. The material properties in this simulation are ¢p =
30°andv = 0.3 andthedisorder parameters,7 = 0.05anda = 1.No
lateral confinement is applied. The orientation of the fault ,,. is
determined by a projection histogram method [16]. (b) The corre-
sponding stress-strain (black) and damagerate (gray) curves are given
by the solid lines. The dotted lines show the same quantities for a
simulation using identical loading and material properties and a
stronger disorder (7 = 0.5 and a = 1). [(b), inset] Macroscopic
maximum and minimum principal stresses, X, Z,, (colored dots)
estimated at the onset of damagelocalization (i.e., at peak load) in a set
of five simulations using the same material properties as in (a) and (b)
and different confining ratios (biaxial compression for R > 0 and
biaxial compression-tension for R < 0). The black solid lines
represent the MC criterion forahomogeneous material with cohesion
7... Open circles are used for the disorder parameters # = 0.05 and
a = 1 and filled circles for the parameters 7 = 0.5 and a = 1.
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is a decreasing function of the scalar internal variable,
d € [0, 1], which describes the level of damage in a material
element, with E° the Young’s modulus of the undamaged
specimen. For sake of simplicity, the Poisson’s ratio v is
assumed constant and does not vary with d. Material
heterogeneities are introduced via the local critical strength
by assigning different cohesions 7. to the constitutive
material elements. In the present simulations, we use E° =
50 MPa and 7. = 25 kPa. We checked that these specific
values do not affect our results as long as 7, < E° [16].

In the numerical simulations, a two-dimensional rectan-
gular specimen of an elastodamageable material with
dimensions L x L/2 is compressed with a stress X; by
prescribing a constant velocity uoy,, On its upper short edge
with the opposite edge fixed in the direction of the forcing
[Fig. 1(a)]. Plane stresses are assumed. A confining stress
%, can be applied on the lateral sides; in this case, the
confinement ratio R = X, /%, is kept constant. We denote
6° the external stress tensor prescribed to the sample. At
each time step, the damage level of the material elements
for which the stress is overcritical with respect to the local
MC criterion is increased such that overcritical stresses are
projected back onto the MC envelope [16]. Both the
prescribed velocity on the upper edge of the specimen
and the lateral confinement are small enough to ensure a
quasistatic driving and small deformations. The simulations
therefore rely on the numerical resolution of the following
force balance and Hooke’s law:

V-6(r) =0, (4)

_E e(r) + Ev
C1l4v

o(r) trle(r)]1,

5
1-12 ( )
where o(r) and €(r) are the planar stress and strain tensors
in the specimen.

Equations (4) and (5) are solved using variational

methods on a two-dimensional amorphous grid made of

more than 33 000 triangular elements [16]. A typical stress-
strain response is shown in Fig. 1(b) for no confinement,
¢ =30° and v =0.3. Consistent with the failure in
compression of quasibrittle materials monitored via acous-
tic emissions [30,31] as well as with previous progressive
damage simulations of this process [26], the simulated
damage indicates some precursory activity. It is initially
distributed homogeneously over the domain (not shown)
and localizes progressively as the loading is increased.
Fault formation is identified by the sudden rise of the
damage rate and corresponds to peak load.

As done in laboratory experiments on rocks [13,15] and
ice [10], we measured the failure envelope by testing
specimens under different confinement ratios [see inset
of Fig. 1(b)]. We observe that the failure envelope of the
specimen given by the principal stresses (X;,%,) at peak
load reproduces the MC criterion enforced at the material
level. Therefore, in agreement with observations [11], u
appears to be a scale-independent property in our numeri-
cal model.

The damage field after peak load exhibits a localization
band characteristic of compressive failure [Fig. 1(a)]. A
projection histogram method is used to determine its
orientation [16], hereinafter referred to as the localization
angle, 0,,.. We observe that the value of 6, is robust and
independent of both the mesh size and the aspect ratio of
the specimen [16]. A first set of compression test simu-
lations representing a minimum disorder scenario is ini-
tialized with a field of cohesion that is uniform for all
except one element chosen at random. For this inclusion, z,.
is initially 5% weaker and is reset to the uniform value of its
neighbors after its first damage event. Figure 2(a) shows the
mean localization angle as a function of the internal friction
angle ¢ and Figs. 2(b), 2(c), the same results for different
Poisson’s and confinement ratios, respectively. Neither the
value nor the variation of 0,,. with ¢ agree with the MC
prediction. In particular, the simulated fault orientation
varies with Poisson’s ratio as well as with confinement, a
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FIG. 2. (a) Mean localization angle 8. as a function of the internal friction angle ¢ for an ensemble of 25 simulations with minimal

disorder using identical boundary and loading conditions. No confinement is applied and v = 0.3. The black dashed line shows the MC
prediction @y, the dotted line, the angle of the most unstable mode 0;g, and the dashed-dotted line the angle of maximal stress
redistribution 6,,,,. The error bars represent £1 standard deviation from the mean. Mean localization angle for (b) different values of
Poisson’s ratio without confinement and (c) different values of confinement ratio for v = 0.3.
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dependence that is not accounted for in the MC theory,
but that has been observed in laboratory experiments on
rocks [13-15].

To understand how macroscopic failure arises in the
model, we perform a linear stability analysis of the
homogeneously damaged solution. In our simulations,
the damage field follows the evolution law,

%(r, t) = Fle°, d(r, 1)), (6)
ot

where the damage driving force F is nonlocal: its value for
a material element depends on the damage level every-
where in the specimen. The linear stability analysis
amounts to linearizing this evolution equation around an
homogeneous damage field. Assuming an infinite speci-
men, the problem is translation invariant and the lineari-
zation can be written as a convolution product of the
damage field with the elastic kernel Wy 0 [32]:

Fl6®.d(r,1)] = Fl6°, d°] + Wy o * 6d(r,1),  (7)

where 6d(r,t) = d(r,t) — d° < 1. The kernel ¥ is remi-
niscent of the Eshelby solution for the mechanical field
around a soft inclusion embedded in an infinite 2D elastic
medium, which also decays as 1/r? [33]. It provides the
redistribution of the driving force F following a localized
(6-distributed) damage growth and as such, describes the
elastic interactions between material elements during dam-
age spreading. In Fourier space, it does not depend on the
magnitude of the wave vector ¢, but only on its polar angle,
. For the elastodamageable medium considered previ-
ously, it follows [16]:

P(w)=A <sin(co)2 - H%M) [6 —sin(w)?], (8)
with A=2X{[(1-v)(1=-R)]/(1=d°)} and &=
(v—=R)/[(1 +v)(1 —R)]. The evolution of the damage
field perturbations is inferred from Egs. (6), (7).
Considering harmonic modes &d(r) « cos(q - r), their
growth rate is given by ¥(w). Since the kernel is maximal
and positive for sin(w*)? = [1 + sin(¢) + 25]/4, one con-
cludes that (i) a homogeneous damage field is unstable and
(ii) all the wave vectors with the orientation @* diverge at
the same rate as ¥ is independent of the magnitude of the
wave vector. Hence, any linear combination of these modes
also diverges at the same rate, corresponding to a locali-
zation band that is perpendicular to ¢, leading to an
inclination 6, = 7/2 £ w* or

©)

1+ si 26
OLs = arccos< *sin(@) + >

2

with respect to the direction of maximum principal com-
pressive stress. For the sake of simplicity, only the solution

lying in [0,7/2] is kept here, but both inclinations are
actually possible in agreement with the orientation of the
secondary faults observed in Fig. 1(a).

We compare the predicted inclination 6;g with the
localization angle 6,,. from the simulations. We find that
the prediction is in excellent agreement with the results of
the minimal disorder numerical simulations [Fig. 2(a)]
and reproduces the observed dependence on Poisson’s
ratio [Fig. 2(b)]. The increase of #,,. with confinement
[Fig. 2(c)] is also well captured, in qualitative agreement
with experimental observations [15,16].

Alternatively, the fault orientation may be compared
to the direction along which stress redistribution is
maximal after a damage event [34]. This angle, 0,,.x =
arccos{+/[3 + sin(¢)) +25]/8}, which maximizes the
angular part of the elastic kernel in real space [16], is
significantly different from the orientation of the most
unstable mode, ;5. Recent compression experiments on
granular materials [35,36] have suggested that 6,,,, may
correspond to the preferred orientation of the precursory
damage cascades prior to failure while 0;g provides the
final macroscopic fault inclination. As shown in Fig. 2(a),
0 s clearly provides a better agreement with the simulations
than 6,,,, in the case of a single evanescent heterogeneity.

Real and, especially, natural materials are heterogeneous
and comprise many randomly distributed impurities that
can serve as local stress concentrators, initiating micro-
cracking and leading to an extended regime of diffuse
damage growth prior to localization [21,23,37,38]. To
determine if and how this regime affects the final orienta-
tion of the macroscopic fault, we introduce disorder in the
critical strength by drawing randomly the cohesion of a
proportion a of the material elements in the range
7.[1 =5, 1 + 5|, with the cohesion of the remaining pro-
portion 1 — a of the elements set to the average cohesion,
7.. We consider cases of weak [ = 0.05, Fig. 3(a)] and
strong [ = 0.5, Fig. 3(b)] disorder. In both cases, the value
of a is varied between 107, corresponding to a few (~3)
inclusions in a homogeneous matrix, and a = 1, for which
all elements have a different critical strength. Consistent
with the minimum disorder case investigated above, the
agreement with the orientation obtained from the linear
stability analysis, 6 s, is best for a =10~ [Figs. 3(a), 3(b)].
The deviation from 0, g increases with both the density a of
inclusions and the strength # of the disorder, indicating that
disorder significantly affects the fault orientation 6. In all
cases however, 6,,. remains well above Oy, and a clear
dependence on Poisson’s ratio and on confinement is still
observed [see Figs. 3(c), 3(d)]. These departures from the
MC theory are in qualitative agreement with the exper-
imental observations reporting the localization angle and its
dependence on confinement [10,13-16]. As a direct con-
sequence, our findings question the estimation of internal
friction or of applied stresses from faults orientation in
natural settings [3—5]. To go further in the comparison of
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FIG. 3. Localization angle measured from the compression
simulations as a function of the internal friction angle for (a) weak
disorder (7 = 0.05) and (b) strong disorder (7 = 0.5) and differ-
ent values of a. No confinement is applied and v = 0.3. Mean 6,
fora = 1 and = 0.5 (strong disorder) and (c) different values of
v without confinement and (d) different confinement ratios for
v = 0.3. The maximum confinement ratio, R, [16], is 58% for
¢ =15° 33% for ¢ =30° 17% for ¢ =45° and 7% for
¢ = 60°. The black dashed line shows Oy, the dotted lines
05, and the dashed-dotted line 6.

experimental observations with the newly developed
theory, triaxial loading as well as a possible dependence
of Poisson’s ratio on damage should be introduced.

To conclude, the discrepancy between the fault angle and
the Mohr-Coulomb prediction indicates that compressive
failure, even when it is not preceded by an extended regime
of stable damage growth, results from the collective
spreading of damage within the specimen. As such, the
fault angle observed in our simulations is successfully
captured from a stability analysis performed at the struc-
tural scale. The role of elasticity, which is responsible for
the redistribution of the stress after a damage event and for
interactions between microcracks, reflects in the depend-
ence of the localization angle on the Poisson’s ratio. The
fact that the MC criterion, derived from the stability of a
single material element, fails to predict the fault angle
suggests that commonly used modeling approaches for
compressive failure [6,7] that do not account for the long-
range elastic interactions between damage events may not
predict accurately the localization threshold, the resulting
band inclination, and their relation with the material and
loading parameters.
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