
Eur. Phys. J. E           (2021) 44:11 

https://doi.org/10.1140/epje/s10189-021-00020-1
THE EUROPEAN
PHYSICAL JOURNAL E

Regular Article - Soft Matter

Rucks and folds: delamination from a flat rigid substrate
under uniaxial compression
Benny Davidovitch1,a and Vincent Démery2,3,b
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Abstract We revisit the delamination of a solid adhesive sheet under uniaxial compression from a flat,
rigid substrate. Using energetic considerations and scaling arguments, we show that the phenomenology is
governed by three dimensionless groups, which characterize the level of confinement imposed on the sheet,
as well as its extensibility and bendability. Recognizing that delamination emerges through a subcritical
bifurcation from a planar, uniformly compressed state, we predict that the dependence of the threshold
confinement level on the extensibility and bendability of the sheet, as well as the delaminated shape
at threshold, varies markedly between two asymptotic regimes of these parameters. For sheets whose
bendability is sufficiently high, the delaminated shape is a large-slope “fold,” where the amplitude is
proportional to the imposed confinement. In contrast, for lower values of the bendability parameter, the
delaminated shape is a small-slope “ruck,” whose amplitude increases more moderately upon increasing
confinement. Realizing that the instability of the fully laminated state requires a finite extensibility of the
sheet, we introduce a simple model that allows us to construct a bifurcation diagram that governs the
delamination process.

1 Introduction

Beyond its broad importance for numerous branches of
materials industry, such as coating and stretchable elec-
tronics, the delamination of thin sheets from an adhe-
sive substrate provides an invaluable glance into the
nontrivial mechanics of slender bodies [1–4]. This view-
point motivated several groups to consider a thin sheet
under uniaxial compression as an inextensible body,
and employ Euler’s elastica to study its delamination
from various types of adhesive substrates—a compli-
ant solid [5], liquid bath [6,7] or a flat rigid substrate
[8]. The inherent simplicity of uniaxial compression,
whereby the stress field in the sheet is a scalar function
(often a constant), has also been exploited to study the
gravity-limited deflection of a heavy sheet from a non-
adhesive floor as a model for deformation patterns in
rugs [9,10]. A related, yet far richer delamination mor-
phology is observed when exerting a biaxial compres-
sion on an adhesive sheet that is supported on a rigid
[11,12] or compliant substrate [13–15], or upon attach-
ing a sheet [16] or a shell [17] onto a substrate of spher-
ical shape. The morphological complexity in such cases
stems from the nontrivial relaxation of a non-uniform
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stress through delamination zones [18,19] and substrate
deformation [20]. With an eye toward this rich behav-
ior, we revisit in this article the problem of delamina-
tion of a nearly inextensible sheet from a rigid adhesive
substrate induced by uniaxial compression (Fig. 1).

Wagner and Vella showed that Euler’s elastica
describes quantitatively the delaminated shape up to
self-contact [8]. Notably they found that the energy
U of the delaminated state evolves with the length Δ
absorbed in the blister as U ∼ Δ1/3 for small Δ. How-
ever, their analysis does not predict the shape of the
sheet after self-contact, which occurs at Δ � 8�BC,
where �BC is the bendo-capillary length [4]. More-
over, under the inextensibility assumption, delamina-
tion occurs at Δd = 0 and requires an infinite compres-
sive stress [21], similarly to the formation of a ruck in
a rug [22].

For a physical sheet, which can accomodate a finite,
albeit minute level of compression, delamination is a
discontinuous (subcritical) transition occurring at a
finite compression length Δd > 0 [10,21], where the
amplitude “jumps” to a finite value. Assuming that
the delaminated shape is a small-slope “ruck,” one can
show that the sheet delaminates at Δd � �BC and
finds the dependence of Δd on the elastic moduli of the
sheet and the adhesion energy [10]. However, numer-
ous swelling experiments of polymer films attached to
rigid substrates [23–25] indicate that patterns of large-
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Fig. 1 a Schematic of our model system for delamination
of a thin sheet under uniaxial confinement (Δ) from a flat
rigid substrate. b Fold ansatz. c Schematic phase diagram,
projected onto the plane of inverse bendability ε and confine-
ment Δ̃, for a fixed value of the extensibility β (Eqs. (2–4)),
showing the three possible morphologies: laminated, small-
slope ruck and large-slope fold

slope, fold-like structures may emerge directly from a
uniformly compressed state, rather than grow gradually
from small-slope rucks (often described as “buckles”).
While some works attributed these observations to a
deformation localized at the film surface that involves
a nontrivial stress profile across the film’s thickness
(similarly to creasing instabilities [26]), it has been
argued by Velankar et al. that the emergence of folds
in these experiments may reflect a delamination insta-
bility, describable by slender body mechanics and gov-
erned by balance of bending and adhesion energies [25].
However, to our knowledge, this proposal has not led
to a quantitative theoretical analysis that addresses the
validity of the assumption of small slope at threshold,
nor how Δd depends on the system parameters if the
delaminated shape is instead a large-slope “fold.”

Here, we propose a large-slope “fold” ansatz for the
shape of the sheet after self-contact. By comparing this
state to the laminated state and to a small-slope ruck,
we determine the possible behaviors of a thin sheet
under compression. We find that moderately bendable
sheets delaminate into a small-slope ruck, which then
grows and finally turns into a large-slope fold—a sce-
nario which has been noted previously [8]. In contrast,
highly bendable sheets delaminate directly into a large-
slope fold (Fig. 1b).

This article is organized as follows. In Sect. 2, we
define the model for wet adhesion on a rigid substrate
and give our main results. In Sect. 3, we perform a scal-
ing analysis assuming inextensible delaminated shapes
and derive our main result. In Sect. 4, we relax the inex-
tensibility constraint and study in detail the mechanics
of a small-slope ruck and obtain its bifurcation diagram.
In Sect. 5, we study the defect mediated nucleation of

delaminated states of small and large slope. In Sect. 6,
we address the applicability of our results for delam-
ination under uniaxial compression beyond the case
of wet adhesion on a rigid substrate. Specifically, we
consider dry adhesion and the effect of (conservative)
tangential forces, gravity-limited delamination from a
non-adhesive substrate, and delamination from a liquid
bath. We discuss our results and conclude in Sect. 7.

2 Model and main result

2.1 Model

We consider a sheet of length L, stretching modulus
Y = Et, where E is the Young’s modulus and t the
thickness of the sheet, and bending modulus B ∼ Et3,
in contact with a planar substrate at y = 0 (Fig. 1a).
We assume that the system is invariant in the direc-
tion z, so that the shape of the sheet can be described
by a curve in the (x, y) plane. Finally, the sheet is
compressed along the x axis by bringing its two ends
together by a distance Δ.

We assume that the sheet adheres to the substrate
through a thin liquid film that wets the substrate
and the sheet, such that both of them remain cov-
ered with a layer of the liquid film after any portion
of the sheet detached from the substrate. The adhe-
sion energy penalty is associated with the liquid–vapor
interfaces, with surface energy γl-v, which are created
when the sheet is not in contact with the substrate or
with itself. The characteristic surface energy per area
is thus Γ = 2γl-v.

The energy of our model thus consists of three terms:
the adhesion, bending and strain energies,

U = Uad + Ubend + Ustrain. (1)

From the parameters Y , B, Γ , L and Δ, we can con-
struct three dimensionless groups:

β =
Γ

Y
, (2)

ε =
B

ΓL2
=

(
�BC

L

)2

, (3)

Δ̃ =
Δ

L
. (4)

Here, β is the “extensibility” (i.e., adhesion-induced
strain), ε−1 is the “bendability,” Δ̃ is the confinement,
and �BC is the bendo-capillary length:

�BC =

√
B

Γ
. (5)

Here we focus on the limit of a nearly inextensible,
highly bendable sheet, β � 1, ε � 1.
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Fig. 2 Schematic log-log plot of the energy of the various
states upon increasing Δ. Blue: small-slope ruck followed
by large-slope fold. Orange and red: laminated state, for
two different values of L. The orange line corresponds to
the moderate bendability regime, the red line corresponds
to the high bendability regime

The laminated state contains only strain energy: its
energy per unit length in the transverse direction z is
(Fig. 2)

U lam =
Y Δ2

2L
=

Y LΔ̃2

2
. (6)

The stress in the sheet can then be evaluated from

σlam = −∂U lam

∂Δ
= −Y Δ̃. (7)

Note that there is a difference between the stress in
the sheet, σlam, and the force, Fext = σlam + γl-v, that
acts on the edge of the sheet in order to hold it at
mechanical equilibrium with Δ̃ �= 0. Specifically, the
minimal force that must be exerted in order to overcome
the liquid–vapor surface tension that pulls the sheet
edge outward and make an infinitesimal compression,
Δ̃ > 0, is: Fext = γl-v [27].

2.2 Main result

Our main prediction, shown in Fig. 1, is the splitting of
the asymptotic regime into two domains for the critical
confinement where delamination occurs, Δ̃d:

(a) High bendability regime:

ε � β2 : Δ̃d ∼ β1/2ε1/4 (8)

in which the energetically favorable state at Δ̃>Δ̃d

is a large-slope “fold,” whose amplitude is propor-
tional to the exerted confinement (A ∼ Δ̃).

(b) Moderate bendability regime:

β2 � ε : Δ̃d ∼ β3/5ε1/5 (9)

in which the energetically favorable state at Δ̃ > Δ̃d

is a small-slope “ruck,” whose amplitude increases
more gradually with the exerted confinement (A ∼

Δ̃2/3), until the ruck becomes a self-touching, large-
slope fold at Δ̃∗ ∼ ε1/2 � Δ̃d (corresponding to
Δ ∼ �BC).

In order to explore the relevance of our predictions
for actual physical systems, it is useful to express the
inequality (8) that defines the high bendability regime
in terms of the physical parameters:

high bendability :
L

t
�

(
Et

Γ

)3/2

� 1 , (10)

(we ignored O(1) numerical prefactors). For an ultra-
thin spin-coated sheet of polystyrene or PMMA (E ∼
1 GPa), with thickness t ∈ (10 − 1000)nm, of the
type used in many elasto-capillary experiments [4] and
a characteristic value of the adhesion energy, Γ ≈
0.1 N/m, we find that the high bendability regime may
be realized by sheets whose length L is a few microm-
eters or more.

3 Scaling analysis of compressed lamination
versus compression-free delamination

In this section, we further simplify the analysis by
assuming that the strain in the laminated state is com-
pletely relieved at the delamination transition, such
that the delaminated state satisfies Ustrain = 0, and can
thus be described by the Euler’s elastica. Moreover, we
restrict ourselves to a scaling analysis. In Sect. 4, we
will elaborate on the validity of this assumption.

3.1 Small-slope ruck

Following Refs. [10,21], we start by assuming that the
delaminated state is a small-slope ruck, whose ampli-
tude A is significantly smaller than its width λ (Fig. 1a).
Since we assume that there is no strain in the delam-
inated state (Ustrain = 0), the inward displacement Δ
must be absorbed in the excess length of the ruck, lead-
ing to the “slaving” condition

A2

λ
∼ Δ. (11)

Following ref. [28], we refer to Eq. (11) as a “slaving
condition,” since for any given width of the delami-
nated zone it implies a certain value of the amplitude,
thereby revoking its “freedom.” An alternative name
for Eq. (11) (as well as Eq. (23), and their counterparts
in wrinkling phenomena), proposed to us by an anony-
mous referee, may be a “wasted length condition.”

The adhesion and bending energies of the ruck then
result in

U ruck ∼ Γλ +
BA2

λ3

∼ Γλ +
BΔ

λ2
, (12)
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where the curvature of the sheet is ∼ A/λ2, and we
have used the slaving condition (11) to get Eq. (12).
The adhesion and bending contributions favor small
and large width λ, respectively, and the optimal width
can be obtained by minimizing the energy (12), leading
to

λ ∼ Δ1/3�
2/3
BC , (13)

U ruck ∼ Γ 2/3B1/3Δ1/3 ∼ Y Lβε1/3Δ̃1/3. (14)

The energy as a function of Δ is depicted in Fig. 2 (blue
curve at small Δ).

The characteristic slope of the ruck is obtained from
Eqs. (11, 13):

A

λ
∼

(
Δ

�BC

)1/3

∼
(

Δ̃2

ε

)1/6

. (15)

The small-slope assumption is thus valid as long as

Δ̃ � Δ̃∗ ∼ ε1/2, (16)

which corresponds to Δ � �BC. If Δ̃ > Δ̃∗, the delam-
inated state is instead a large-slope fold, which we
describe below (Fig. 1b,c).

The delamination threshold can be obtained by com-
paring the energies of the ruck and of the laminated
state (Eqs. (6, 14)), yielding

Δ̃d ∼ (
β3ε

)1/5
. (17)

This estimate is valid only if the small-slope approxi-
mation is valid at delamination, Δ̃d < Δ̃∗, which cor-
responds to moderate bendability:

ε � β2. (18)

In this regime, upon increasing the confinement Δ̃, the
sheet delaminates at Δ̃d into a small-slope ruck, which
then becomes steeper and finally reaches self-contact
and becomes a large-slope fold at Δ̃∗; this is the phe-
nomenology described quantitatively by Wagner and
Vella [8] and Napoli and Turzi [21]. On the contrary, at
high bendability, ε � β2, the small-slope approxima-
tion is not valid at delamination and the critical con-
finement Δ̃d should be determined by comparing the
energy of the planar state to the energy of a large-slope
fold.

Finally, we can evaluate the residual compressive
stress in the ruck from

σruck = −∂U ruck

∂Δ
∼ Γ 2/3B1/3Δ−2/3. (19)

Using the value of λ [Eq. (13)], the stress can be written

σruck ∼ B

λ2
, (20)

which corresponds to the critical load in Euler buckling
and wrinkling instabilities.

3.2 Large-slope fold

For a confinement above the threshold value Δ̃∗ ∼ ε1/2

[Eq. (16)], that is Δ∗ ∼ �BC, where the small-slope
assumption is not valid, we can devise a fold ansatz
that can absorb any excess length at constant energy,
in the spirit of the large folds occurring in floating sheets
at large confinement (Fig. 1b) [29]. In such a fold, the
adhesion and bending energies are concentrated in the
delaminated region of size λ and at the tip of the fold,
with size λ′. There is no bending energy in the “walls”
of the fold and, due to self-contact, there is no adhesion
energy either. Since the lengths λ and λ′ are determined
by a balance of adhesion and bending, they are governed
solely by the bendo-capillary length: λ ∼ λ′ ∼ �BC.
Note that the tip of the fold corresponds to the “racket”
shape described earlier [30,31]. Hence, the delaminated
length and the energy of the fold are

λ ∼ �BC, (21)

U fold ∼
√

BΓ ∼ Y Lβε1/2, (22)

and the fold amplitude is trivially determined by a slav-
ing condition, akin to Eq. (11):

A � Δ

2
. (23)

At the ruck-fold transition, Δ ∼ �BC, the ruck and fold
energies (Eqs. (14, 22)) are equal, signifying yet another
transition, separate from the delamination transition.
In the fold state, the stress vanishes, as is evident from
the independence of the energy on the confinement:

σfold = −∂U fold

∂Δ
= 0. (24)

The energy plateau attained upon the formation of a
fold is shown in Fig. 2 (blue curve at large Δ).

The delamination threshold in the high bendability
regime ε � β2 is obtained by comparing the energy of
the fold to the energy of the laminated state (Eqs. (22,
6), respectively), leading to

Δ̃d ∼ β1/2ε1/4. (25)

In this regime, the flat state delaminates into a large-
slope fold, whose amplitude grows proportionally to the
confinement Δ̃ (Fig. 1c).

4 Compressible ruck, bifurcation diagram

The scaling analysis of the previous section and the
resulting phase diagram (Fig. 1) along with the discon-

123



Eur. Phys. J. E           (2021) 44:11 Page 5 of 12    11 

tinuous transitions it embodies raise some natural ques-
tions: to what extent is the inextensibility assumption,
which we employed to describe the delaminated states,
a valid one? What are the energy barriers associated
with the transitions between the different states? How
is delamination affected by defects, such as patches of
the substrate without adhesion? To address these ques-
tions, we consider the energy (1) when compression is
allowed, such that Ustrain > 0 also in the delaminated
state. First, this allows us to assess the validity of the
inextensibility assumption underlying the analysis in
the previous section. Second, delaminated states with
compression are capable of interpolating between the
laminated and the strain-free delaminated states, thus
enabling us to evaluate the energy barriers underlying
the delamination transition, from which we can deduce
the effect of defects.

We start with a thorough analysis of the small-slope
limit. We write the energy of a small-slope ruck with
compression allowed. Then, optimizing the energy with
respect to the amplitude A for a given width λ of the
delaminated zone, we obtain a bifurcation diagram that
we compare to the inextensible case. Finally, we con-
sider the energy in the presence of a defect and show
how the behavior of the system can be extracted from
the bifurcation diagram.

4.1 Energy of a ruck in a compressible sheet

We consider the energy (12) of a small-slope ruck, allow-
ing for compression and thereby replacing the slaving
condition (11) by a strain energy:

U = Uad + Ubend + Ustrain (26)

= Γλ +
c1BA2

2λ3
+

Y L

2

(
Δ̃ − c2A

2

λL

)2

, (27)

The numerical constants c1 and c2 can be determined
by matching to the small-slope elastica solution [8],

h(x) =
A

2

[
1 + cos

(
2πx

λ

)]
(28)

for x ∈ [−λ/2, λ/2], leading to

c1 = 2π4, (29)

c2 =
π2

4
. (30)

Finally, it is more convenient to consider directly the
energy difference with respect to the laminated state:

ΔU =
c1BA2

2λ3
+ Γλ + Y L

[
1
2

(
c2A

2

λL

)2

− c2A
2Δ̃

λL

]
.

(31)
We point out that the laminated state is a limit case

of a compressible ruck corresponding to A = 0, λ →
0. Hence, delamination into a small-slope ruck can be

understood by considering the evolution of the energy
landscape ΔU(A, λ) as the confinement Δ̃ increases,
assuming fixed values of β and ε.

Introducing the dimensionless parameter

η =
c1β

3ε

2c2
(32)

and the rescaled versions of the energy u, confinement
δ, ruck’s width x and amplitude a

U = Y Lη2/5u, (33)

Δ = Lη1/5δ, (34)

λ = Lη2/5β−1x, (35)

A = c
−1/2
2 Lβ−1/2η3/10a, (36)

the energy difference reads

Δu = x +
(

1
x2

− δ

)
a2

x
+

a4

2x2
. (37)

Notably, the confinement δ is the only parameter
left after rescaling, thereby drastically simplifying the
study of the energy landscape Δu(a, x). This implies, in
particular, that delamination occurs at a critical value
δd ∼ 1, meaning that Δ̃d ∼ η1/5 ∼ (

β3ε
)1/5. This

observation substantiates the validity of the scaling of
the threshold obtained in Sect. 3.1 by assuming that the
ruck is inextensible; we see below that the presence of
compressive strain in the ruck does however affect the
numerical prefactors associated with this scaling rela-
tion.

The rescaling also provides the characteristic slope
of the ruck: assuming that x ∼ a ∼ 1, we get A/λ ∼
(β2/ε)1/10, thereby substantiating the validity of the
small-slope approximation in the parameter regime ε �
β2 [Eq. (18)], which was obtained in Sect. 3 by assuming
an inextensible ruck.

4.2 Optimal amplitude

The energy landscape Δu(a, x) has a simple form: for
a given value of x it is a second-order polynomial in a2,
meaning that it has a single minimum a∗(x). We thus
find the optimal amplitude of a ruck for a given value
of its width x. If

x ≥ xE = δ−1/2, (38)

Δu is minimal for the amplitude

a∗ =

√
δx − 1

x
. (39)
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With this amplitude, the energy is

Δu = x − 1
2

(
δ − 1

x2

)2

. (40)

Otherwise, if x < xE, the optimal amplitude is a = 0:
the energy of any ruck with a rescaled width below xE

is larger than the energy of the fully laminated state.
The threshold value xE [Eq. (38)] of the ruck’s width

x at a given confinement δ corresponds to the thresh-
old for Euler buckling. Indeed, in dimensional quanti-
ties, x > xE reads σ ≥ 4π2B/λ2, which is the thresh-
old value of the uniaxial compressive load at which a
sheet of width λ with clamped edges undergoes Euler
buckling. When x < xE, or δ < x−2, the sheet is sta-
ble against buckling and the laminated state is favor-
able even in the absence of adhesion. Equivalently, for
a given confinement δ, the sheet cannot buckle and a
fortiori delaminate over lengths smaller than xE. When
the Euler buckling threshold is exceeded, the optimal
amplitude (39) of a ruck of rescaled width x is deter-
mined by a balance of strain energy, which favors an
amplitude value close to the slaving condition a =

√
δx

[Eq. (11)] to relieve the strain of the laminated state,
and bending energy, which favors small curvatures and
thus small amplitudes. The optimal amplitude departs
continuously from 0 as a function of x.

As noted above, the strain is not completely relieved
with the optimal amplitude (39). We can obtain the
residual strain, which underlies the third term of the
energy (27):

εres =
c2A

2

λL
− Δ̃ = η1/5

(
a2

x
− δ

)
= −η1/5

x2
= −4π2B

Y λ2
.

(41)
As we noted above, this corresponds to the critical
Euler strain, which remains in a finite-amplitude ruck.

4.3 Inextensibility limit

Before addressing the general solution of Eqs. (39, 40),
let us reconsider the inextensible limit. Assuming that
the delaminated sheet is inextensible amounts to satis-
fying the slaving condition (11), which reads a =

√
δx in

rescaled form, whereby the strain is completely relieved.
In this case, the energy (37) is given by

Δuinext = x +
δ

x2
− δ2

2
. (42)

Note that for any x this energy is higher than the energy
(40) obtained with the optimal amplitude, meaning
that the actual delaminated state retains some, albeit
minute level of residual strain. The energy Δuinext is
plotted as a function of x for different values of δ in
Fig. 3 (dotted lines). Mimizing this energy over x, we
obtain

xinext = (2δ)1/3 (43)

Fig. 3 Energy difference Δu as a function of the rescaled
ruck’s width x with the amplitude a chosen to minimize the
energy [Eq. (40)] and local minimum (circles) for different
values of δ. Dotted lines: energy Δuinext obtained upon mod-
eling the delaminated state as an inextensible deformation
of the sheet

Δuinext =
3

22/3
δ1/3 − δ2

2
, (44)

thereby recovering the scaling relations obtained in
Sect. 3.1, supplementing them with numerical prefac-
tors. Delamination occurs when Δuinext = 0:

δd,inext = 541/5 � 2.22. (45)

4.4 Bifurcation diagram

We now analyze the evolution of the energy (40) as the
confinement increases; we plot it as a function of x for
different values of δ in Fig. 3 (solid lines). At small δ,
the energy has a single minimum at x = xE = δ−1/2,
meaning that a = 0. As δ is increased beyond a first
threshold

δc � 1.49, (46)

a local maximum xmax and a local minimum x∗ appear,
both of which correspond to delaminated states with
positive amplitudes. However, the energy of the new
local minimum is still higher than the energy of the lam-
inated state. As δ is increased beyond a second thresh-
old

δd � 2.18, (47)

the energy of the local minimum becomes lower than
the energy of the laminated state and delamination
occurs. As expected, the threshold δd is lower than the
one obtained by assuming inextensibility [Eq. (45)], but
the relative difference is only about 2%.

The bifurcation diagram, which consists of stable and
unstable branches (local minimum x∗ and maximum
xmax, respectively) as a function of δ is shown in Fig. 4a.
At large confinement, the stable branch approaches the
inextensible approximation [Eq. (43)], while the unsta-
ble branch approaches the threshold for Euler buck-
ling [Eq. (38)]. The energy differences between the
two branches and the fully laminated state are shown

123



Eur. Phys. J. E           (2021) 44:11 Page 7 of 12    11 

Fig. 4 a Bifurcation diagram that describes delamination
in the moderate bendability regime, β2 � ε. The curves
correspond to stable (solid line) and unstable (dashed line)
branches, inextensible case (dotted line) and Euler thresh-
old (thick light line). b Energy difference for the local min-
imum (solid line), the local maximum (dashed line), which
corresponds to the energy barrier, in the inextensible case
(dotted line), and for the adhesion energy in Euler buckling
(thick light line)

in Fig. 4b. Recalling that a discontinuous transition
requires the crossing of an energy barrier from the
metastable laminated state to the stable delaminated
state, we can estimate this gap as Δu(xmax) (dashed
line in Fig. 4b. At large confinement, we find that
xmax → xE = δ−1/2: the energy barrier is dominated
by the adhesion energy of the corresponding unsta-
ble delaminated state. Notably, the laminated state
remains metastable even under arbitrarily large confine-
ment. Nevertheless, the energy barrier for delamination
decreases as Δu ∼ δ−1/2.

Similarly to other nucleation phenomena (e.g., con-
densation in a supersaturated gas), which are typically
facilitated by the presence of defects rather than by
rare thermal fluctuations that enable crossing the rel-
evant energy barrier, we anticipate that the primary
mechanism for delamination under compression is also
mediated by defects. This motivates our study in the
next section.

5 Defect mediated delamination

In this section, we consider the nucleation of a delam-
inated state on a defect, which suppresses the energy

barrier. Inspired by Velankar et al. [25], we model a
defect by a patch of size λdef where there is no adhe-
sion. Such a defect could originate, for instance, from
a gas bubble between the sheet and the substrate, or
from a heterogeneous substrate–liquid surface energy.

5.1 Nucleation of a small-slope ruck

We first consider the nucleation of a small-slope ruck,
which is relevant for the moderate bendability regime,
ε � β2, using the rescaling introduced in Sect. 4.1
and the rescaled defect size xdef . For a given width x
of the delamination zone, the optimal amplitude a∗ is
determined by a balance of strain and bending ener-
gies, regardless of the presence of a defect, so that the
defect only affects the adhesion term in the energy (40),
leading to

Δu = max(x − xdef , 0) −
(

δ − 1
x2

)2

. (48)

The energy is plotted as a function of x for different
values of δ and two defect sizes in Fig. 5a,b. Starting in
the laminated state and following the energy minimum
as δ increases, we see that delamination occurs over the
defect when the threshold for Euler buckling is reached:
δ = x−2

def . The delaminated length x remains set by xdef

and the amplitude grows continuously (Fig. 5c,d) until
the bifurcation curve is reached (Fig. 5e). The behavior
depends on the ratio xdef/xc, where xc � 1.06 is the
width of the delaminated zone at the critical confine-
ment in the defect-free system:

– If xdef > xc, the bifurcation curve is met on the
stable branch (blue curves in Fig. 5a,e), and the
energy minimum departs continuously from xdef to
follow the stable branch (Fig. 5d); the amplitude is
continuous (Fig. 5c).

– If xdef < xc, the bifurcation curve is met on the
unstable branch (red curves Fig. 5b,e), and the
energy minimum jumps from xdef to the stable
branch (Fig. 5d); the amplitude is discontinuous
(Fig. 5c). In this case, the behavior is hysteretic and
the system would not follow the same path upon
decreasing δ: it would follow the stable branch of
the bifurcation curve down to the critical point and
the delaminated length would then jump down to
the defect size, x = xdef .

The effect of the defect size xdef and confinement δ
on the width x of the delaminated zone can be sum-
marized in a phase diagram (Fig. 5f). Below the Euler
buckling threshold, δ ≤ x−2

def , the sheet is laminated.
Between this line and the bifurcation curve, the sheet
delaminates and the delamination width is given by the
size of the defect, x = xdef . In the bifurcation curve, the
delamination width is given by the stable branch of the
bifurcation curve, x = x∗.
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Fig. 5 The effect of defects on the formation and growth
of rucks. The various curves describe the behavior in the
presence of a defect of rescaled size xdef ; xdef = 0.89 (red)
or xdef = 1.5 (blue). a,b Energy difference with the lami-
nated state for different values of δ (labels) for xdef = 1.5 a
or xdef = 0.89 b. The circles indicate the state of the sys-
tem by following the local energy minimum from the lami-

nated state. c Amplitude as a function of δ. d Delaminated
width as a function of δ. e Path followed in the two cases
in the (δ, x) plane showing the Euler buckling threshold and
bifurcation lines. f Phase diagram summarizing the effect of
confinement and defect size on the width of the delaminated
zone in various regions of the (δ, xdef) plane for moderately
bendable sheets (β2 � ε)

5.2 Delamination into a fold

As we saw in Sect. 3, at large bendability, ε � β2,
the sheet adopts a folded configuration right at delam-
ination. Contrary to the moderate bendability regime,
we do not have a finite-strain ansatz that interpolates
between the compressed laminated state and the inex-
tensible fold state from which we could derive the bifur-
cation diagram. However, using elementary considera-
tions about the large-slope fold and the analysis of the
nucleation in a small-slope ruck we can propose a bifur-
cation diagram also in the large bendability regime.

We focus on adapting the diagram of Fig. 5e to
delamination into a large-slope fold. Ignoring the resid-
ual strain in the fold state, the curves in the (δ, xdef)
plane that are derived from the unstable and stable
branches of delamination are given, respectively, by the
Euler buckling criterion, xE = δ−1/2 (such that an
infinitesimal-amplitude delamination of width x > xE

gives rise to a fold), and the inextensible fold state
addressed in Sect. 3, which is characterized by a width
λ = �BC. These considerations readily yield the phase
diagram shown in Fig. 6 (in the original version of the
parameters).

Fig. 6 Phase diagram analogous to Fig. 5f, but for the high
bendability regime, ε � β2, where the shape that emerges at
delamination threshold is a fold, rather than a small ampli-
tude ruck

6 Beyond wet adhesion on a rigid substrate

6.1 Dry adhesion

We have focused on wet adhesion, where the unique
contribution to adhesion energy comes from the for-
mation of liquid–vapor interfaces upon delamination
(Γ = 2γl-v). In the absence of a lubricating liquid
film (“dry adhesion”), a proper modeling of the com-
pressed laminated state and the delamination process
may require one to account also for tangential forces
between the sheet and the substrate, whose nature may
be conservative [32] or frictional [9,10]. Notwithstand-
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Fig. 7 Surface energies involved in dry adhesion

ing these complications, it is useful to discuss the nec-
essary modification of the adhesion energy (1) and its
direct implications. In the case of dry adhesion, four
surfaces energies are involved: substrate–vapor γsub-v,
sheet–vapor γsh-v, substrate–sheet γsub-sh and sheet–
sheet γsh-sh for the self-contact in the fold (Fig. 7). A
natural assumption is that γsh-sh = 0 or merely much
smaller than the other 3 surface energies; however, we
will consider also the possibility that all 4 surface ener-
gies are comparable.

When the delaminated shape is a small-slope ruck,
the picture of wet adhesion holds, with the adhesion
energy replaced by Γ = γsub-v + γsh-v − γsub-sh.

The large-slope fold is affected differently. The size
of the racket at the tip of the fold is set by the bendo-
capillary length �′

BC =
√

B/Γ ′, where Γ ′ = γsh-v −
γsh-sh. The length of the delaminated area at the base
of the fold is affected by �BC =

√
B/Γ as well as �′

BC.
The most significant difference between the dry adhe-
sion problem and its wet counterpart pertains to the
energy of the fold, which now has a contribution pro-
portional to its amplitude coming from self-contacting
parts,

U fold ∼ Δγfold ∼ 2Aγfold (49)

per unit length in the transverse direction, with

γfold = Y βfold =
1
2
γsh-sh − γsub-sh. (50)

This additional contribution modifies the threshold for
fold formation and we may distinguish between two
cases.

– γfold < 0: In this case (which is the ultimate one
if γsh-sh ≈ 0), the sheet prefers to stick to itself
rather than to stick to the substrate, so that there
is an energy gain in increasing the fold amplitude.
For highly bendable sheets (ε � β2), delamination
occurs when the energy of the fold becomes nega-
tive:

Δ̃d ∼ ε1/2 , (51)

such that the delamination threshold is now smaller
than the threshold in the wet adhesion case (8).

– γfold > 0: In this case (which is possible only if γsh-sh

exceeds twice the value of γsub-sh), there is an ener-
getic penalty for growing the fold. Comparing the
energy (49) to the energy of the laminated state, we
obtain the new delamination threshold

Δ̃d ∼ βfold . (52)

For ε � β2, this threshold is higher than the thresh-
old in the wet adhesion case [Eq. (8)].

6.2 Tangential sheet–substrate forces

We expect a similar demarcation of high and low bend-
ability regimes that exhibit, respectively, small-slope
rucks and large-slope folds at the delamination tran-
sition, to be relevant also for other examples of thin
sheets that deflect from a rigid substrate under uni-
axial compression. One example is a recent study [32],
in which the effect of conservative (non-frictional) tan-
gential forces exerted by the substrate on the lami-
nated parts of the sheet was modeled through an addi-
tional contribution to the energy (1) that is harmonic
in the horizontal (in-plane) displacement and propor-
tional to a substrate–sheet “bond stretching” constant
k. The presence of such a term yields a new length scale,√

Y/k =
√

Et/k, over which the stress induced by a
compressive load on each edge decays. Hence, one may
distinguish two cases: (a) If L � √

Y/k, then the effect
of this energy term is negligible, and the energy can
be safely approximated by Eq. (1). (b) If L � √

Y/k
(which is the case addressed in ref. [32]), a compres-
sive stress in the laminated state exists only over a
length Leff ∼ √

Y/k and the delamination phenomenol-
ogy is thus expected to be described by our study
(up to different numerical prefactors), upon substitu-
tion ε → (�BC/Leff)2 = E2t4/(kΓ ). The predictions
obtained through the analysis in ref. [32]—delamination
into small-slope rucks that evolve to folds (or “jam-
ming” [32]) upon increasing load—resemble the obser-
vations in ref. [8] and hence appear to be specialized
to the moderate bendability regime. We expect a dis-
tinct phenomenology, with folds appearing immediately
at the delamination transition, to be obtained for suf-
ficiently thin sheets (t � (kΓ/E2)1/4).

6.3 Gravity-limited deflection from a non-adhesive
substrate

Let us consider now the “ruck in a rug” problem,
namely, the deflection of a heavy sheet under uniaxial
compression from a non-adhesive substrate. Here, the
mechanical equilibrium of a deflected shape is deter-
mined by a balance between gravitational potential
energy (GPE), rather than adhesion energy and bend-
ing energy. Following ref. [10], we consider a small-slope
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(A � λ), inextensible ruck and evaluate its energy, sim-
ilarly to the analysis in Sect. 3, replacing the adhe-
sion energy (Γλ) with the GPE, ρgtA ∼ ρgt

√
Δλ,

where ρ is the mass density of the sheet. This analy-
sis yields the width of the deflected zone λ ∼ �

6/7
BGΔ1/7,

where �BG = (B/ρgt)1/3 ∼ (Et2/ρg)1/3 is a “bendo-
gravity” length, akin to the bendo-capillary length (5),
and the amplitude is determined by the inextensibil-
ity assumption, A ∼ √

Δλ. Comparing the energy of
the deflected state with that of the uniformly strained
planar state, we find the threshold for ruck forma-
tion Δ̃d ∼ β

14/27
g ε

1/9
g , where we define the bendability

parameter ε−1
g = (L/�BG)2, analogously to Eq. (3) and

βg = ρgt/E. The characteristic ruck slope at thresh-
old is A/λ ∼ β

2/9
g /ε

1/6
g , and as it approaches O(1) the

ruck assumption becomes invalid. Hence, we expect to
have also for this model system a “moderate bendabil-
ity” regime, εg � β

4/3
g , which features a ruck forma-

tion at the deflection threshold, and a “high bendabil-
ity” regime, εg � β

4/3
g , where a large-slope deflection

appears already at threshold. In terms of the dimen-
sional parameters of the model, these two regimes cor-
respond to L � E/ρg and L � E/ρg, respectively,
independently of the sheet thickness t!

We note that E/ρg is the maximal height, hmax, of a
solid material (a taller object cannot sustain its own
weight). Hence, the above observation suggests that
upon compressing a solid sheet whose lateral size L
exceeds hmax, the sheet will fold onto itself at delamina-
tion. This argument indicates that a plausible fold-like
ansatz that minimizes simultaneously bending energy
and GPE for εg � β

4/3
g can be obtained in analogy

to ref. [29] and the analogous discussion in Sect. 3.
As Fig. 8 shows, in such a deflection bending energy
and GPE are penalized only at two regions, each of
length ∼ �BG and curvature ∼ �−1

BG. Comparing the
energy of this fold ansatz with the energy of a flat,
uniformly compressed state, we find a deflection transi-
tion at Δ̃c ∼ β1/3ε1/4. The resulting phenomenology is
depicted in Fig. 8 (analogously to Fig. 1b for the adhe-
sive model). In drawing this analogy between delamina-
tion from an adhesive (no gravity) and the non-adhesive
substrate, we only focus on the energetic mechanism.
We cannot rule out the possibility that in the latter
case there is an energy barrier or another obstacle to
forming a fold.

6.4 Delamination from a liquid bath

While a distinction between low bendability and high
bendability regimes, analogous to the one highlighted
in our paper, may be relevant also for delamination
from deformable substrates [9,33–35], a thorough dis-
cussion of the various model systems is beyond the
scope of our paper. Instead, let us consider only the
specific case of a sheet floating on a liquid bath (where
the GPE is governed by the liquid density ρl rather
than the mass of the sheet itself) under uniaxial com-

Fig. 8 Schematic phase diagram for the deflection of a
heavy sheet of mass density ρ, thickness t and length
L, under uniaxial compression from a rigid non-adhesive
floor, projected onto the plane of dimensionless parameters
εg = (�BG/L)2 = (Et2/ρgL3)2/3 and Δ̃) for a fixed value of
βg = ρgt/E. In analogy to Fig. 1c, the diagram shows the
three possible morphologies: flat (uniformly compressed),
small-slope ruck and large-slope fold

pression [33,36,37]. For this system, the planar state
may become unstable to wrinkling—periodic undula-
tions of wavelength λw ∼ (B/ρlg)1/4 (reflecting a bal-
ance of bending energy and GPE) that populate the
whole sheet without delaminating from the liquid sub-
phase. In contrast to delamination, wrinkling occurs
through a continuous bifurcation, namely, there is no
energy barrier and the wrinkle amplitude grows contin-
uously from zero when the confinement Δ̃ exceeds the
threshold value

Δ̃w ∼
√

Bρlg

Y
. (53)

For Δ̃ > Δ̃w, the energy of the wrinkled state is

Uwr ∼
√

BρlgΔ̃L. (54)

On the contrary, if delamination occurs the liquid bath
may remain nearly flat with negligible GPE penalty,
reflecting a balance of bending and adhesion energies
through a single delaminated zone, as described in
Sect. 3.

Inspection of Eqs. (53, 8, 9) reveals that if the sheet’s
length L is larger than L∗ then the delamination thresh-
old is reached before the wrinkling threshold, Δ̃d < Δ̃w.
Introducing the “softness” parameter [38]:

s =
�BC

�C
=

√
Bρlg

Γ
, (55)

where �C =
√

Γ/ρlg is the capillary length, we find
that:

L∗ ∼ �C
β

×
{

s−3/2 if s � 1,
s−1 if s � 1.

(56)

Pocivavsek et al. [36] used a 10 µm thick polyester film,
for which the softness is s � 2 and the critical length
is thus L∗ � 1 km. Huang et al. [38] used polystyrene
sheets with typical thickness 200nm, leading to s �
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10−3 and L∗ � 500 km. Obviously, in both cases (in
which the sheet’s length L is a few centimeters), we
have that L � L∗ and therefore wrinkling is expected
before delamination.

The above consideration suggests that in order to
determine the delamination threshold, the energy of the
delaminated states [Eqs. (12, 22)] should be compared
to the energy of the wrinkled state [Eq. (54)] instead of
the flat state. We find that the wrinkling-delamination
threshold Δ̃w-d is governed by the softness s:

Δ̃w-d ∼ �C
L

×
{

1 if s � 1 (fold),
s−1/2 if s � 1 (ruck). (57)

In this equation, we did not take into consideration
the wrinkle-fold transition of the fully laminated state,
which is known to suppress the energy considerably
[29,36,37,39]. This transition takes place at Δ̃ ∼
�C

√
s/L, so that if s � 1 it occurs before delamination

into a fold. On the contrary, if s � 1, delamination
into a ruck precedes the wrinkle-fold transition. As a
conclusion, depending on the softness parameter s, the
following sequences are predicted:

flat → wrinkles →
{

laminated fold (s � 1),
delaminated ruck (s � 1). (58)

Notably, the prediction (58) does not correspond
to the experimental observations. On one hand, Poci-
vavsek et al. (s � 1) observed a wrinkle-fold transi-
tion of the fully laminated state and have not reported
a delamination [36]. This apparent “paradox” may be
readily resolved by recalling the profound difference
between the wrinkle-fold and delamination transitions.
While the former constitutes a continuous cross-over of
the laminated shape, the delamination transition has
been shown to be subcritical over a rigid substrate, and
the same can be expected for delamination from a wrin-
kled state over a liquid substrate. The wrinkled state
would thus remain stable under small deflections, being
destabilized only with the aid of deflections that are
sufficiently large to cross the corresponding energy bar-
rier (Fig. 4). Thus, while we expect that delamination
may occur if the confinement is done sufficiently slowly
[6] (or perhaps with the aid of defects, such as those
addressed in Sect. 5), it seems plausible that a typical
experiment avoids delamination and thus leads to the
wrinkle-fold transition of the laminated shape.

On the other hand, in experiments with ultrathin
polymer sheets (s � 1), Huang et al. [38] have not
observed a wrinkle-fold transition of the fully laminated
state. The avoidance of the wrinkle-fold transition has
been attributed to a suppressing effect of a wrinkle cas-
cade, which appears precisely when s � 1 [38]. In that
case, Eq. (57) predicts that the wrinkled state could
delaminate into a single fold when Δ > �C, which is cer-
tainly attainable in that experimental setup. Although
observation of such a macroscopic delamination of the
wrinkle pattern may be challenging due to the subcrit-
ical nature of the instability and the associated energy

barrier, we note that in the experiments of [38] it has
been observed that the wrinkled sheet often develops
“accordions” of large-slope, tightly packed undulations
next to the confining walls. It may be interesting to
explore whether this phenomenon reflects a “localized
delamination” that does not expand throughout the
whole length of the sheet.

7 Discussion

In this article, we revisited the delamination of a thin
sheet under uniaxial compression from a rigid adhe-
sive substrate. Following previous works on this prob-
lem [8,10,21], we employed a basic model energy (1),
which accounts for the adhesion energy, as well as the
bending and strain in the sheet. Our analysis highlights
the important effect of the ratio �BC/L, between the
bendo-capillary length and the length of the confined
sheet, on the equilibrium configurations (Figs. 1, 2) as
well as the kinetics of the delamination transition and
the effect of defects (Figs. 5f,6). As a consequence, an
exhaustive description of delamination transitions pre-
dicted by this model energy requires one to specify two
dimensionless material parameters—the extensibility β
and bendability ε−1 = (L/�BC)2. In hindsight, we note
that previous works have implicitly addressed a moder-
ate bendability parameter regime, β2 � ε, in which the
sheet delaminates into a small-slope ruck that evolves
into a large-slope fold upon increasing confinement. The
current work reveals a distinct, high bendability regime,
ε � β2, in which the confined laminated sheet trans-
forms into a fold immediately at the delamination tran-
sition.

In this regard, it is interesting to consider here the
experiments of Velankar et al. [25] on the swelling of
polymer (PDMS) films attached to a rigid substrate.
These authors observed that upon swelling the homo-
geneous state does not develop small-slope “buckles,”
but rather highly-localized, large-slope folds, which are
often (but not always) preceded by a creasing insta-
bility of the surface. Velankar et al. further argued
that, rather than merely being a surface instability,
the folds are in fact delaminated zones. Since the com-
pressive load in such swelling experiments is biaxial,
and the observed patterns consist of multiple delami-
nated zones, rather than a single fold expected under
uniaxial compression, any attempt to test our predic-
tions against the observations of Velankar et al. [25] (or
[23,24]) must be taken with a grain of salt. Nonethe-
less, let us note that with the physical parameters of
their system: L � 25 mm, t � 100 µm, E � 20 KPa,
and assuming Γ � 0.1 N/m, we have that L/t � 250,
whereas Et/Γ � 2, so that a fold-like delamination
instability of the homogeneous state is consistent with
our prediction. We hope that controlled experiments
under uniaxial compressive load will elucidate the effect
of the bendability parameter on the nature of delami-
nation patterns.
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Thus, while we focused our study on delamination
induced by uniaxial compression, we expect that the
conceptual lesson drawn from our study, namely, the
relevance of a bendability parameter to delamination
phenomenology, applies also for other, more compli-
cated systems, specifically the biaxial stresses associ-
ated with swelling or thermal expansion of polymer
sheets on rigid [23–25] and deformable [34,35] sub-
strates. Another notable example is the curvature-
induced delamination of sheets from an adhesive sub-
strate of a spherical shape, where compression is
induced by geometrical incompatibility [16,18,19]. For
that problem too, we find that previous studies have
focused on a moderate bendability regime and a differ-
ent approach is required to describe delamination pat-
terns in a high bendability regime.
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