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Abstract
The problem of a particle diffusion in a fluctuating scalar field is studied. In contrast to most
studies of advection diffusion in random fields, ours analyzes the case where the particle
position is also coupled to the dynamics of the field. Physical realizations of this problem are
numerous and range from the diffusion of proteins in fluctuating membranes to the diffusion of
localized magnetic fields in spin systems. We present exact results for the diffusion constant of
particles diffusing in dynamical Gaussian fields in the adiabatic limit, where the field evolution
is much faster than the particle diffusion. In addition we compute the diffusion constant
perturbatively, in the weak coupling limit, when the interaction of the particle with the field is
small, using a Kubo-type relation. Finally we construct a simple toy model which can be solved
exactly, and which extrapolates between the adiabatic limit, for fields with rapid dynamics, and
the limit where the field is quenched or frozen.

1. Introduction

The diffusion of passive particles in complex and random
velocity fields has been extensively studied in statistical
mechanics and fluid mechanics. In most of these studies
one is interested in the dispersion of tracer particles which
are advected by the complex or random field but which do
not affect the field itself—it is for this reason they are called
passive [1, 2]. These systems can be studied in the case
of incompressible velocity fields (relevant for problems of
turbulent dispersion in fluid mechanics) and the case where
the velocity field is derived from a gradient (relevant to
statistical mechanics and dynamical transitions related to the
glass transition). As well as diffusion in time dependent
fields, the problem of diffusion in quenched random fields
has also been extensively studied [3]. Assuming that the
advecting velocity field has zero mean, the passive tracer
particle may diffuse normally as 〈x2(t)〉 ∼ t but in certain
circumstances the particle diffuses anormally 〈x2(t)〉 ∼ t2ν

with ν �= 1/2. In the case where ν < 1/2 the diffusion is
called subdiffusive and when ν > 1/2 the diffusion is called
superdiffusive [4]. Other interesting phenomena arise when
one considers the diffusion of an ensemble of non-interacting
(among themselves) tracers. Here, depending on the statistics
of the advecting field, clustering phenomena may arise [2].

In this paper we will consider a problem where the tracer
particle’s position is coupled to the evolution of a scalar field.

This means that the particle is advected by the field but
also that the dynamics of the field is affected by the particle
position. We take the dynamics of the field to be over damped
stochastic dynamics. An interesting question arises as to how
the diffusion of the particle depends on the field’s dynamics, for
instance one could have the same Hamiltonian for the system
but in one case the field may evolve according to model A
(non-conserved order parameter) dynamics and in the other
by model B (conserved order parameter) dynamics or indeed
Brownian hydrodynamics [5]. We will first concentrate our
study on the case where the field dynamics is much more rapid
than the local diffusion of the tracer particle. In this limit we
will show that the diffusion of the particle is always slowed
down by coupling the field. This is in contrast to the case where
the effect of the tracer on the particle is ignored and where
in this limit it can be shown that the diffusion of the particle
is speeded up. We then consider a perturbative calculation of
the effective diffusion constant where the coupling between the
field and particle position is weak. This computation is based
on a Kubo-like relation for the effective diffusion constant,
in addition this relation shows explicitly that the diffusion
constant of the particle is reduced when its position is coupled
to the fluctuating field.

A concrete example of this problem is the diffusion of a
protein on a membrane. The protein’s position can be coupled
to the height fluctuations of the membrane, for instance by
tending to impose a local mean curvature [6]. Alternatively the
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protein’s position could be coupled to the local composition
of the membrane; this could be because the protein has an
affinity for a particular lipid type in a multicomponent lipid
membrane or because it imposes a local tilt on the lipid
hydrocarbon tails [7]. These two types of couplings lead to
membrane mediated interactions between proteins but they will
also modify the dynamics of a protein in the membrane. Indeed
the question of what determines a protein’s diffusion constant
in a lipid bilayer is biologically very important. The problem
was first addressed by Saffmann and Delbrück [8] based
on a two-dimensional fluid model. However experimental
studies [9] suggest that this simple fluid model may not
explain the experimental data on protein and peptide diffusion
constants as a function of their size. A number of studies
have subsequently shown that protein coupling to membrane
composition and height can substantially modify the protein’s
diffusion constant [10–16]. We should note that height
fluctuations can modify the effective observed diffusion
constant of a protein in a membrane even when there is no
coupling between the fluctuations and protein position. This
is because the protein diffuses in the plane of the membrane
but the diffusion is observed on the projected area; this,
geometric effect, leads to an apparent reduction of the diffusion
constant [17, 18].

2. The model

Consider the dynamics of a Langevin particle, whose position
is denoted by x(t), diffusing with a linear coupling to a
fluctuating free field. The overall Hamiltonian for the system
is

H = 1
2

∫
φ(x)�φ(x) dx − hKφ(x(t)) (1)

where we will take � and K to be self-adjoint operators.
For two operators A(x, x′) and B(x, x′), their composition as
operators is AB(x, x′) = ∫

dx′′ A(x, x′′)B(x′′, x′) and applying
the operator A(x, x′) to the function f (x) gives the function
A f (x) = ∫

dx′ A(x, x′) f (x′). If the operator A is translation
invariant we will also write A(x, x′) = A(x − x′); this is the
case of all the operators used here.

The above Hamiltonian applies to many systems. For
example if we take � = −∇2 + m2 and K = 1, this is a
model for a point magnetic field of magnitude h diffusing in
a Gaussian ferromagnetic model. If � = κb∇4 − σ∇2 and
K = −∇2, the Hamiltonian is the Helfrich one for the height
fluctuations of a lipid membrane where φ represents the height
and the choice of K is due to the fact the particle is coupled
to the local membrane curvature [19]. Here we are interested
in the diffusion of the particle in the field. However to study
the dynamics of diffusion we must also define the dynamics of
the field. Here we will take for the field dynamics the general
dissipative dynamics form

∂φ(x)

∂ t
= −κφ R

δH

δφ(x)
+ √

κφξ(x, t) (2)

where R is a self-adjoint dynamical operator and ξ is a
Gaussian noise of zero mean which is uncorrelated in time.
For instance, R = δ(x − x′) corresponds to model A

conserved dynamics and R = −∇2δ(x − x′) corresponds
to model B dynamics [5]. If one is considering the case
where φ represents the height fluctuations of a membrane then
using Brownian hydrodynamics the Fourier transform of R,
R̃ is given by R̃(k) = 1/4η|k|, where η is the viscosity
of the solvent surrounding the membrane [17]. The field
dynamics is taken so as to respect detailed balance, so that
the Gibbs–Boltzmann distribution is found for the equilibrium
measure of the field and the particle position. This means that
the correlation function of the noise respects the fluctuation
dissipation relation

〈ξ(x, t)ξ(x′, t ′)〉 = 2T R(x − x′)δ(t − t ′), (3)

where T is the temperature of the system. The dynamics of the
particle is given by

∂xi(t)

∂ t
= −κ

∂ H

∂xi
+ √

κηi (t), (4)

where the noise terms is Gaussian noise with mean zero and
correlation function

〈ηi (t)η j (t
′)〉 = 2T δi jδ(t − t ′). (5)

The coefficients κ and κφ can be used to set the relative
time scale between the dynamics of the field fluctuations
and that of the tracer movement. In the absence of a
coupling between the field and the particle, the particle diffuses
normally and within the notation set up here the mean squared
displacement at large times behaves as

〈x2(t)〉 ∼ 2dTκ t = 2d Dt, (6)

where d is the spatial dimension and D = T κ is the bare
diffusion constant. For the specific choice of Hamiltonians
considered here we thus have the equations of motion

∂φ(x)

∂ t
= −κφ R�φ(x)+hκφ RK (x −x(t))+√

κφξ(x, t) (7)

and
∂xi(t)

∂ t
= hκ∇Kφ(x(t)) + √

κηi (t). (8)

In the limit where it is defined we will be interested in the
effective diffusion constant for the tracer defined via

〈x2(t)〉 ∼ 2dT κet = 2d Det, (9)

where De is the effective late time diffusion constant.
We note that, as mentioned above, equation (8) has been

extensively studied in the case where the field φ evolves
independently of the particle position. This problem is
referred to as the advection diffusion of a passive scalar (the
concentration of the particle) in a fluctuating field φ. This is
obtained in the limit where one sets h = 0 in equation (7)
but keeps h �= 0 in equation (8). It was suggested that this
limit can be used to approximate the diffusion of the tracer
particle in [10, 12]. In this case it is found that the effect
of the field fluctuations can be to increase the diffusivity of
the tracer particle with respect to that obtained when it is
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not coupled to the fluctuating field (h = 0). However the
numerical simulations of [13] where the effect of the particle
position on the field is taken into account suggests that the
diffusion is reduced with respect to the case h = 0 and in [16]
the authors of [10, 12] revisited the problem and numerically
and analytically confirmed the findings of [13]. The adiabatic
results obtained here show that in this limit the diffusivity is
always diminished with respect to the case h = 0 and we argue
that this is the limit where the diffusivity should be the most
rapid. We also will show via a Kubo-type formula that active
coupling to the fluctuating field should always reduce the value
of the diffusion constant.

3. The adiabatic limit

We will now analyze the dynamics of this system in the limit
κφ 	 κ , i.e. where the field dynamics is much quicker than
that of the particle. The basic idea is that one can eliminate the
field variable in a mathematically controlled manner to yield
an effective diffusion equation for the particle where the field
no longer appears implicitly. This sort of procedure can be
carried out at the level of the Fokker–Planck equation using
projection operator methods [20]. However in the case here
as we have a dynamical variable φ with an infinite number of
degrees of freedom we will use an alternative method based on
direct analysis of the Langevin equations [21, 22].

First we assume that at t = 0 the field φ = 0 everywhere
as at late times, when the field is equilibrated, this condition on
the initial field configuration is unimportant. However in cases
where the field stays out of equilibrium, for example where it
coarsens, the initial condition will be important. Integrating the
equation of motion for the field then gives

φ(x) =
∫ t

0
ds exp(−κφ(t − s)R�)[hκφ RK (x − x(s))

+ √
κφξ(x, s)]. (10)

Now if κφ is large and the operator R� is positive, the above
integral is dominated by the region where s is close to t . We
make the simple change of variables u = t − s in the above to
find

φ(x) =
∫ t

0
du exp(−κφu R�)[hκφ RK (x − x(t − u))

+ √
κφξ(x, t − u)]. (11)

A Taylor expansion about u = 0 of the terms of the form
x(t − u) yields,

φ(x) =
∫ t

0
du + exp(−κφu R�)

[
hκφ RK (x − x(t)) + hκφu

× dx j(t)

dt
∇ j RK (x − x(t)) + √

κφξ(x, t)

]
+ O

(
1

κ
3
2
φ

)

= h�−1 K (x − x(t)) + h

κφ

dx j(t)

dt
(R�)−2∇ j RK (x − x(t))

+
√

1

κφ

(R�)−1ξ(x, t), (12)

as each power of u in the Taylor expansion yields a factor
of 1/κφ on performing the integral over u. There are also

operator terms of the form exp(−tκφ R�) coming from the
upper limit of the integration at u = t , however as we assume
that R� is positive these terms can be neglected at large times
t . This assumption is physically equivalent to assuming that
the field in the absence of the particle can equilibrate in a finite
time. If this is not the case then there is a possibility that the
diffusion can become anomalous due to growing length scales
in the field. Indeed we will see that the diffusion constant
for localized fields in Gaussian ferromagnets can vanish if the
field’s equilibrium correlation length diverges.

We must now compute ∇Kφ(x(t)) from the above. We
may write the first term of equation (12) using its Fourier
representation as

hK�−1 K (x−x(t)) = h

(2π)d

∫
dk

K̃ 2(k)

�̃(k)
exp(ik ·(x−x(t)))

(13)
and the second term is given by

dx j(t)

dt
K (R�)−2∇ j RK (x − x(t)) = dx j(t)

dt

h

κφ(2π)d

×
∫

dk ik j
K̃ 2(k)

�̃(k)2 R̃(k)
exp(ik · (x − x(t))). (14)

The results now give that to the order of approximation in 1/κφ

used above we have

∇i Kφ(x(t)) = h

(2π)d

∫
dk iki

K̃ 2(k)

�̃(k)
− dx j(t)

dt

h

κφ(2π)d

×
∫

dk k j ki
K̃ 2(k)

�̃(k)2 R̃(k)
+
√

1

κφ

∇i K (R�)−1ξ(x, t).

(15)

The first term is zero by isotropy and we can also write

∫
dk k j ki

K̃ 2(k)

�̃(k)2 R̃(k)
= δi j

d

∫
dk k2 K̃ 2(k)

�̃(k)2 R̃(k)
. (16)

We may thus write the effective Langevin equation for x(t) as(
1 + h2κ

κφd(2π)d

∫
dk k2 K̃ 2(k)

�̃(k)2 R̃(k)

)
dxi(t)

dt

= hκ

√
1

κφ

∇i K (R�)−1ξ(x(t), t) + √
κηi(t). (17)

Let us remark here that if we had not taken into account
the effect of the particle position on the field and had simply
considered the effect of the field on the particle, the case
of passive diffusion, we would have arrived at the effective
diffusion equation

dxi(t)

dt
= hκ

√
1

κφ

∇i K (R�)−1ξ(x(t), t) + √
κηi(t). (18)

The effective diffusion constant for the process of equation (17)
κe is simply related to that of equation (18), which we will
denote by κ∗, via

κe

κ∗ =
[

1 + h2κ

κφd(2π)d

∫
dk k2 K̃ 2(k)

�̃(k)2 R̃(k)

]−2

. (19)
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If we write equation (18) as

dxi(t)

dt
= ζi(x(t), t), (20)

we see that the correlation function for the noise is given by

〈ζi(x(t), t)ζ j (x(t ′), t ′)〉 = 2T δ(t − t ′)δi jκ

×
[

1 + h2κ

κφd(2π)d

∫
dk k2 K̃ 2(k)

�̃(k)2 R̃(k)

]
, (21)

which immediately yields

κ∗

κ
= 1 + h2κ

κφd(2π)d

∫
dk k2 K̃ 2(k)

�̃(k)2 R̃(k)
(22)

and

κe

κ
=
[

1 + h2κ

κφd(2π)d

∫
dk k2 K̃ 2(k)

�̃(k)2 R̃(k)

]−1

. (23)

We thus see that if the particle diffuses passively in the field,
the diffusion constant (κ∗) is increased by its advection by the
field. However in the active case, when the coupling is taken
into account, the diffusion constant is reduced. Moreover to
first order in κ/κφ we find that the change in the two different
diffusion constants with respect to their bare values is the same
in magnitude but of opposite sign. It is interesting to note that
there is no temperature dependence on the renormalization of
κe due to the interaction with the field. This means that De

retains a simple linear dependence on T within the adiabatic
approximation.

Note that the integrals occurring in the above can be
ultra-violet divergent. This may be the case for certain
local operators K , for example K (x − x′) = δ(x − x′).
When numerically simulating the system in this case one can
just introduce an ultra-violet cut-off in the simulation, i.e. a
maximal Fourier mode. The result given here shows that a
naive application of the Stokes–Einstein relationship works for
the effective diffusion constant De. Define by D the diffusion
constant without a coupling to the field. For a particle moving
at constant velocity the frictional force, opposing the motion,
is given by

f0 = λ0v. (24)

However, the friction is related to the mobility via

v = μ0 f0. (25)

Stokes–Einstein tells us that, when it is valid (see later
discussion),

D = μ0T, (26)

and using the fact that D = T κ we have that λ0 = 1/κ .
Now in presence of the coupling one can compute the

average frictional force fφ due to the fluctuation field [14, 15]
and one finds that

fφ = λφv (27)

where λφ is given by

λφ = h2

κφd(2π)d

∫
dk k2 K̃ 2(k)

�̃(k)2 R̃(k)
. (28)

The total frictional force is thus given by

f = f0 + fφ = (λ0 + λφ)v. (29)

This gives via the Stokes–Einstein relation

De = μeT = T

λ0 + λφ

= D

[1 + h2 Dβ

κφd(2π)d

∫
dk k2 K̃ 2(k)

�̃(k)2 R̃(k)
]
, (30)

where β = 1/T , which is equivalent to the result
equation (23). We also note that all the terms in the integrand of
equation (23) are positive and thus we have within the adiabatic
approximation that De < D. The application of the Stokes–
Einstein relation that we have just made is clearly not exact.
To compute the diffusion constant using the Stokes–Einstein
relation one must compute the average value of the velocity v

at constant applied force [3]. This is a much harder problem
than computing the average force at constant velocity. In a
previous paper [15] we argued that the Stokes–Einstein relation
as applied above should be valid when the fluctuations of the
force are small, and thus the force is near to constant in the
statistical sense. The fact that the average force is large means
that the friction is large and thus the diffusion constant is small.
Here we see that the adiabatic limit reproduces the approximate
application of the Stokes–Einstein relation given above. This
result can be explained by examining the expression given
for the autocorrelation function of the force fluctuations given
in [14]; here one sees in the adiabatic limit that fluctuations
of the force become uncorrelated in time and their amplitude
becomes small.

3.1. Examples

We will now consider a number of special cases of our
principle result equation (23) which we will write as

κe

κ
=
[

1 + h2Sdκ Q

κφd(2π)d

]−1

. (31)

with

Q =
∫

dk kd+1 K̃ 2(k)

�̃(k)2 R̃(k)
, (32)

and where Sd is the area of a sphere of radius 1 in d dimensions.
Considering now a localized magnetic field diffusing in a

ferromagnet within the Gaussian approximation, we take

�̃(k) = k2 + m2. (33)

We assume a magnetic field with a localized Gaussian profile
and thus

K̃ (k) = exp

(
−k2a2

2

)
. (34)

With this we find

Q = md−2
∫ ∞

0
dq

qd+1

(q2 + 1)2
exp(−q2m2a2) (35)
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for model A dynamics and

Q = md−4
∫ ∞

0
dq

qd−1

(q2 + 1)2
exp(−q2m2a2) (36)

for model B dynamics.
In certain cases one can take the limit a → 0 in the above

and thus obtain results that are only weakly dependent on the
cut-off. However these cases depend strongly on the mass of
the field theory and the result can be divergent when the theory
is critical, i.e. when m = 0. These cases are the following

• Model A: d � 1

Q = π

4m
, d = 1. (37)

• Model B: d � 3

Q = π

4m3
, d = 1

= 1

2m2
, d = 2

= π

4m
, d = 3. (38)

We thus see that as the mass of the scalar field is decreased
or its correlation length ξ = 1/m increases the diffusion
constant of the active tracer particle is decreased. In the
limit where h 	 1 the magnetic tracer will be surrounded
by a polarized region where the field φ has the same sign as
the tracer field. The size of the polarized region will be of
order ξ and the modification to the diffusion constant above
presumably reflects the effective mobility of this polarization
cloud. It is also interesting to note the different dependence on
m between model A and B in one dimension.

Cases where the results have a strong dependence on the
cut-off have been extensively discussed in [15]. A notable
example among these cases is that of a protein, which is
linearly coupled to the local membrane curvature. However if
the protein is linearly coupled to the membrane height profile
the corrections to the diffusion constant in the adiabatic limit
are independent of the cut-off. Such a linear coupling could
be induced by holding a membrane protein in an optical trap
or due to its interaction with an actin cytoskeleton or similar
polymer network. Here the Helfrich Hamiltonian for lipid
membranes gives [19]

�̃ = κbk4 + σk2, (39)

where κb is the bending rigidity and σ the surface tension. The
dynamical operator for membrane dynamics is given by

R̃ = 1

4ηk
, (40)

where η is the viscosity of the surrounding fluid [17], defining
R this way means that we set κφ = 1 in equation (31) and
the adiabatic limit corresponds to small η. Using these forms
in equation (32) then yields the correction to the diffusion
constant

Q = πη

κ
1
2

b σ
3
2

. (41)

We note that this correction diverges in the limit where the
surface tension σ vanishes. The corresponds to the point where
the static correlation length of membrane height fluctuations
ξ = √

κ
σ

diverges.

4. Weak coupling limit

In this section we use a formally Kubo-like expression for the
effective diffusion constant; the expression can formally be
computed to O(h2) in the particle-field coupling parameter,
thus giving an expression for De which is exact to this order.
To obtain the Kubo formula we integrate equation (8) to obtain

x(t) − x(0) = hκ

∫ t

0
∇Kφ(x(s))ds + √

2TκB(t) (42)

where Bt is a standard d-dimensional Brownian motion with

〈Bi(t)B j (s)〉 = δi j min{t, s}. (43)

In the above we assume that at t = 0 the system is in
equilibrium (i.e. we assume that the volume of the system
is finite, and x0 and the initial field configuration φ are
chosen from the equilibrium distribution (see [3] for more
details)). Now subtracting the first term of the right-hand
side of equation (42) from both sides, squaring the resulting
equation and taking the average yields

〈(x(t) − x(0))2〉 + h2κ2

〈(∫ t

0
∇Kφ(x(s)) ds

)2
〉

= 2T dκ t,

(44)
where the cross term on the right-hand side is zero due to the
Onsager relations [3]. We can thus define a time dependent
diffusion constant via

〈(x(t) − x(0))2〉 = 2d De(t)t = 2dTκe(t)

= 2T dκ t − h2

〈(
κ

∫ t

0
∇Kφ(x(s)) ds

)2
〉

(45)

where the late time limit of these two quantities are the
effective values limt→∞ De(t), κe(t) = De, κe. We may
therefore write

De

D
= 1 − h2β2 D

2d
lim

t→∞

〈
1

t

(∫ t

0
∇Kφ(x(s))ds

)2
〉

. (46)

From this exact formula we see that the value of the diffusion
constant is reduced by the interaction with the field. This
expression may now be evaluated to O(h2) by replacing x(t)
by the pure Brownian motion

√
2DBt of the particle without

interaction of the field and using the correlation function for
the free field without interaction with the particle which can be
written as

〈φ0(x, t)φ0(y, s)〉 = T
∫

dk
(2π)d

�̃−1(k)

× exp(−κφ |t − s|R̃(k)�̃(k)) exp(ik · (x − y)). (47)

After a straight forward computation using the fact that B(t)
and φ0 are independent we obtain

De

D
= 1 − h2β D

d

∫
dk

(2π)d

k2 K̃ 2(k)

�̃(k)(κφ R̃(k)�̃(k) + Dk2)

+ O(h4). (48)

5
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Note that in the adiabatic limit this result is clearly equivalent
to equation (30) to O(h2). In terms of the variables κ

equation (48) reads

κe

κ
= 1−h2κ

d

∫
dk

(2π)d

k2 K̃ 2(k)

�̃(k)(κφ R̃(k)�̃(k) + Tκk2)
+ O(h4);

(49)
note therefore in contrast to the purely adiabatic result equa-
tion (23) that there is a temperature dependent renormalization
of κe. Another interesting thing to note is that in this pertur-
bative result we can recover the case where the field is frozen,
i.e. the other extreme to the adiabatic limit where κφ = 0. Here
the field is quenched and has correlation function T �−1. This
quenched result agrees with the first order perturbation result
for quenched random fields [3].

4.1. Examples

Once again we will consider the Gaussian ferromagnet under
model A and model B dynamics and compare the results with
those of section 3.1. In order to facilitate the comparison we
will write equation (49) as

κe

κ
= 1 − h2Sdκ

κφd(2π)d
Q (50)

which has the same form in perturbation theory as
equation (31) but where Q is given by

Q =
∫

dk kd+1 K̃ 2(k)

�̃(k)(�̃(k)R̃(k) + T κ
κφ

k2)
. (51)

We see that the expression for Q in equation (51) is the same as
that in the adiabatic limit in the two limiting cases, κ/κφ → 0
and when T → 0. We will again consider the cases where the
diffusion constant is finite, as the cut-off is taken to infinity,
and compare the corrections to the diffusion constant in the
adiabatic and weak coupling limits.

• Model A. d � 1

Q = κφπ

2Tκm

⎡
⎣1 − 1

(1 + T κ
κφ

)
1
2

⎤
⎦ , d = 1. (52)

Here we thus find that the diffusion constant diverges
as 1/m when m → 0 as is the case in the adiabatic
approximation.

• Model B. d � 3

Q = πκφ

2Tκm

⎡
⎣1 − 1

(1 + T κ
κφm2 )

1
2

⎤
⎦ , d = 1

= κφ

2κT
ln

(
1 + T κ

κφm2

)
, d = 2

= πκφ

2Tκ

[(
m2 + T κ

κφ

) 1
2

− m

]
, d = 3.

(53)

Here we see comparing with the results of section 3.1 that
divergence in 1/m is reduced due to the temperature dependent
term. In one and two dimensions the divergence is reduced but
in three dimensions it is completely eliminated.

In the case of a two-dimensional membrane with a linear
coupling to the height profile, the correction to the diffusion is,
as in the adiabatic approximation, cut-off independent. Here
we find that for σκb < 4η2T 2κ2

Q = ηπ

σ(σκb − 4η2T 2κ2)
1
2

×
[

1 − 2

π
tan−1

(
2ηTκ

(σκb − 4η2T 2κ2)
1
2

)]
, (54)

and we easily see how the adiabatic result in recovered in the
limit ηTκ/κφ → 0. When σκb > 4η2T 2κ2 the result can be
written as

Q = η

σ(4η2T 2κ2 − σκb)
1
2

× ln

[
4(ηTκ + (η2T 2κ2 − σκb

4 )
1
2 )2

κbσ

]
. (55)

In the limit of high temperatures this result can be written as

Q ≈ 1

2σ Tκ
ln

(
16η2T 2κ2

κbσ

)
, (56)

and we see that the correction to the diffusion has a relatively
weak logarithmic dependence on the viscosity of the fluid
surrounding the membrane η, and the bending rigidity κb.

5. A toy model

In the general class of models studied above we have been able
to obtain partial results on the effective diffusion constant of
an active tracer in two distinct limits: the adiabatic limit and
the weak coupling limit. Here we present a simple toy model
whose behavior can be thoroughly analyzed. We consider a
tracer particle x coupled to another diffusion process y via the
Hamiltonian defined by

H (x, y) = V (x − y), (57)

where V is a function such that there exists a vector (or set
of vectors) a such that, V (x) = V (x + a) in the algebraic
or statistical sense. For example we could take V (x) to be
a periodic function or one that is statistically invariant by
translation. The coupled diffusion equations for x and y are
given by

∂xi

∂ t
= −κx

∂V (x − y)

∂xi
+ √

κxηxi (58)

∂yi

∂ t
= κy

∂V (x − y)

∂xi
+ √

κyηyi , (59)

where the noise variables above are white noise at temperature
T as defined earlier. In the case where the variable y is frozen
(or equivalently κy = 0), as the function V is translationally
invariant and if it is bounded, we expect the process x will have
an effective quenched diffusion constant defined by

〈x2
t 〉 ∼ 2d D(q)

e t = 2dTκ(q)
e t, (60)

6
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and which is independent of the choice of y by the translational
invariance of V . We note that it is possible to compute De

exactly in a number of special cases [3]. In order to see the
effect of the dynamics of y on the process x we define the new
variables

u = x − y (61)

v = κyx + κxy, (62)

and it is then easy to see that these new dynamical variables
obey

∂ui

∂ t
= −(κx + κy)

∂V (u)

∂ui
+ √

κxηxi − √
κyηyi (63)

∂vi

∂ t
= κy

√
κxηxi + κx

√
κyηyi . (64)

Furthermore one can easily see that the noises in these two
equations are independent and thus the processes u and v are
independent. The process u is simply a time rescaled form of
the quenched problem and v is a free Brownian motion. The
mean squared displacement of the two processes can thus be
computed easily and are given by

〈u2
t 〉 ∼ 2dTκ(q)

e

κx + κy

κx
t (65)

〈v2
t 〉 ∼ 2dTκxκy(κx + κy)t . (66)

Finally using the independence of u and v we find that

〈x2
t 〉 ∼ 2dTκx

(
κ

(q)
e + κy

κx + κy

)
t, (67)

which gives the effective diffusion constant of x as

De

T
= κe = κx

(
κ

(q)
e + κy

κx + κy

)
. (68)

We see that in the quenched limit κy = 0 we obtain that

κe = κ
(q)
e as we should. In addition it is clear that κe

is an increasing function of κy , the quenched case being a
lower bound for the effective diffusion constant. Another
interesting fact about the expression equation (68) is that there
are a number of models where the quenched diffusion constant
vanishes, signaling the transition from a regime of normal
diffusion to one of subdiffusion [3, 22–24]. However we see
from equation (68) that when κy �= 0 then the vanishing of κ

(q)
e

does not cause the diffusion constant to vanish as the result has
an additive property. Indeed if κ

(q)
e = 0 then we find

κe = κxκy

κx + κy
(69)

throughout the parameter region where the quenched problem
shows subdiffusion.

The quenched diffusion constant κ
(q)
e can be computed

exactly in a limited number of cases [3], notably in one
dimension where it is given by

κ
(q)
e

κx
= 1

〈exp(−βV )〉〈exp(βV )〉 (70)

Figure 1. Effective diffusion coefficient versus field evolution
velocity for the model of equations (58) and (59) in one dimension
for V (x) = cos(x) and temperatures T = 0.5(+), 1(×) and 2 (*).
The continuous lines correspond to the analytical result.

where

〈exp(±βV )〉 = lim
L→∞

1

L

∫ L

0
exp(±βV (x)) dx (71)

which exists for translationally invariant potentials.
An exact result also exists in two dimensions in the case

where the field V is statistically equivalent to −V (either
functionally or statistically) [3]; it has the simple form

κ
(q)
e

κx
= 1

〈exp(βV )〉 . (72)

As a test of this result in one dimension we took the
potential V (x) = cos(x) and equations (68) and (70) then give

κe

κx
= I0(β)−2κx + κy

κx + κy
, (73)

where I0(z) denotes the modified Bessel function. Numerical
simulations were carried out for κx = 1 and κy varying
between 0.1 and 10 and at temperatures T = 0.5, 1 and 2.
The results given figures (1) show an excellent agreement with
the analytical result equation (73).

6. Discussion

We have examined the diffusion of an active tracer particle
coupled to a fluctuating field. Most previous studies have been
carried out on passive tracers in time dependent or quenched
fields. The action of the tracer on the field means that diffusion
is always slowed down with respect to the non-interacting case;
this fact is explicit in equation (46). This result may seem odd
from a physical point of view as one would naively expect
that the fluctuating field would help the particle to diffuse.
Indeed we have seen that in the adiabatic approximation a
passive diffuser diffuses more quickly when driven by the
field. However when the effect of the tracer on the field
is taken into account the effect of the extra noise from the

7
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fluctuating field is eliminated by a additional drag due to the
action of the tracer on the field. Although it is in a limiting
case, the adiabatic calculation carried out here shows how
these two effects compete and lead to slowing down of the
diffusion with respect to the free case. As an example we
analyzed the diffusion constant of magnetic fields diffusing
in Gaussian ferromagnets; here we found that the diffusion
rate decreases as the correlation length of the field increases.
This result is presumably linked to the fact that the field is
trapped in domains where the field has the same sign and also
its presence leads to the formation of these domains about it.
As the correlation length increases the size of the domains
containing the field increases and the diffusion constant of the
field effectively becomes that of it surrounding domain. It
seems physically reasonable that the diffusion constant of the
surrounding domain becomes smaller as its size increases.

We have also analyzed the active diffusion problem in
the weak coupling limit where the existence of an underlying
Gibbs measure allows us to write down a Kubo-type formula
for the diffusion constant. As well as rigorously establishing
that diffusion is slowed down with respect to the free case,
this formula can be used to give a first order expression for
the modified diffusion constant.

Finally we have analyzed a toy model for a particle
interacting with a scalar field in the simple case where this
scalar field is another diffusing particle. In this case the
effective diffusion constant can be formally computed in terms
of the effective diffusion constant for a particle diffusing in a
quenched random potential. The effect of the dynamics of the
second diffuser can be thoroughly understood, and as its bare
diffusion constant is increased so is that of the tracer.

Clearly there are still a large number of questions
about diffusion of active scalars in fluctuating fields, for the
precise problem examined here the whole regime beyond the
perturbative and adiabatic regimes studied here remains open.
It would also be interesting to understand in more detail the
cross over from the active to passive cases and understand
under what circumstances field fluctuations increase/decrease
the tracer diffusion constant.
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