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Abstract. We study the drag force on uniformly moving inclusions which interact linearly with dynamical
free field theories commonly used to study soft condensed matter systems. Drag forces are shown to
be nonlinear functions of the inclusion velocity and depend strongly on the field dynamics. The general
results obtained can be used to explain drag forces in Ising systems and also predict the existence of drag
forces on proteins in membranes due to couplings to various physical parameters of the membrane such as
composition, phase and height fluctuations.

1 Introduction

Quantum field theory explains how particles can interact
at a distance via their coupling to a quantum field [1].
However, interaction at a distance also occurs in classical
systems where particles or inclusions are coupled to clas-
sical thermal fields. For instance inclusions embedded in
lipid membranes can interact due to their coupling with
the membrane height fluctuations [2] or with the local lipid
composition [3]. As well as effective interactions between
inclusions, coupling to a classical field can also show up
in the transport properties of inclusions in these fields,
notably via drag forces which can be generated and act
upon uniformly moving inclusions. The knowledge of drag
forces is important as they can be used to estimate ef-
fective transport parameters, for example diffusion con-
stants by using the Stokes-Einstein relation. Drag forces
have been studied in a wide variety of systems, for in-
stance on line defects moving through liquid crystals [4,
5] and on dislocations in layered structures [6] and quasi-
crystals [7]. As well as being present for inclusions in a
field, drag forces are also experienced by objects outside
but interacting with the field, for instance magnetic force
microscope tips interacting with magnetic substrates [8,
9]. In a recent letter [10] we analyzed the drag on an in-
clusion which interacts with the fluctuating field, for ex-
ample a magnetic field at a point which moves through
an Ising ferromagnet. Our analysis was restricted to free
scalar fields undergoing a general class of overdamped dis-
sipative dynamics. A number of remarkable features were
found for the drag in this class of problems: i) the aver-
age drag force 〈f〉 is a nonlinear function of the velocity,
in general it is linear for small v and is characterized by
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a friction coefficient λ = − limv→0〈f〉/v. ii) In systems
where the free-field theory is critical (has a diverging cor-
relation length) this friction coefficient can diverge and
is regularized by the system size. iii) At large velocities
the average force decays to zero as 〈f〉 ∼ 1/v. It was also
found that numerical simulations for the drag in the Ising
model could be well fitted using results for free fields (cor-
responding to the Gaussian approximation for the field
theory of the ferromagnet).

In this paper we will give an extended account of the
results and derivations of [10]. In addition we will show
how the divergence of the friction coefficient λ can be reg-
ularized by looking at the system at a finite time after the
inclusion starts to move, rather than in its steady state,
and show that it diverges as a power law in time. The
fluctuations of the force about its mean value are also
analyzed and we show that the zero-velocity fluctuations
of the force are related to the linear friction coefficient
via a fluctuation-dissipation type relation. We also pay
particular attention to computations of drag coefficients
in two-dimensional systems. The reason for this is that
there has been much recent interest in the diffusion con-
stant for proteins in lipid membranes. The first theoreti-
cal computation of the diffusion constant of a protein in a
lipid membrane treats the protein as a solid cylinder in a
two-dimensional incompressible fluid layer hydrodynami-
cally coupled to the surrounding bulk fluid [11]. The drag
force on the fluid can be computed and one finds that, via
the Stokes-Einstein relation, the diffusion constant has a
weak logarithmic dependence on the cylinder radius a.
Here we explore the possibility that drag may be gener-
ated by coupling to one of the several possible physical
fields associated with the membrane, for instance height
fluctuations, thickness fluctuations, composition fluctua-
tions, local phase fluctuations. As mentioned above, in [10]
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it was noted that drag forces in Ising models, which are
clearly interacting models, could be well fitted by compu-
tations based on free-field theories. In general we have no
explanation for this, but in this paper we have analyzed
the drag forces in the one-dimensional Ising model with
Glauber dynamics with a (weak) point-like magnetic field
moving at constant velocity. We find an exact expression
for 〈f〉 which turns out to have the limiting form of model
A dynamics for a free Gaussian theory in the continuum
limit where the correlation length is large.

2 The free-field model

2.1 Model definition

In this section we will analyze the drag force exerted on
an inclusion moving at constant velocity v which is lin-
early coupled to a Gaussian or free field. We denote by
φ(r) a scalar field on a d-dimensional space. We write the
coordinates of the system as r = (x, z), where the motion
of the inclusion is in the z-direction. The Hamiltonian for
the system is given by

H =
1

2

∫

drφ(r)Δφ(r) − hKφ(Q(t)), (1)

where Q(t) = (0, vt) is the position of the inclusion at
time t, Δ is a positive self-adjoint operator and K a linear
operator. The instantaneous force on the inclusion in the
direction z is given by

f = h
∂

∂z
Kφ|r=Q(t), (2)

i.e. it is simply the partial derivative of the total energy
with respect to the movement of the inclusion in the direc-
tion z, with the field values held constant. The energetic
formulation of the way in which the inclusion interacts
with the field thus has the clear advantage, with respect to
imposing boundary conditions, of giving an unambiguous
way of computing the instantaneous force. This energetic
approach was recently employed to compute the thermal
Casimir force in a variety of field theories with dissipative
dynamics of the type employed here [12].

Note that in the above we have used the operator no-
tation

Δv(r) =

∫

dr′Δ(r − r′)v(r′). (3)

We will consider a general over-damped dissipative dy-
namics for the field φ which can be written in the general
form

∂φ(r)

∂t
= −R

δH

δφ(r)
+ η(r, t), (4)

where R is a positive self-adjoint dynamical operator and
the noise is Gaussian, white in time, with correlation func-
tion

〈η(r, t)η(r′, t′)〉 = 2Tδ(t − t′)R(r − r′). (5)

This choice of the correlation function obeys the fluctu-
ation dissipation relation which ensures that the equilib-
rium measure for the field is the Gibbs-Boltzmann one.

2.2 Specific examples and applications of the free field
model

Before carrying out the general calculation we will give
some examples of the sorts of field theories, interactions
and dynamics that one can analyze with the formalism
that follows. We start with various choices of the operator
Δ:

Δ(r) = (−∇2 + m2)δ(r), (6)

Δ(r) = (κ∇4 − σ∇2)δ(r). (7)

Equation (6) corresponds to the Gaussian approximation
for the Hamiltonian of a ferromagnet in the Landau the-
ory, as such the field φ can be the local magnetization, the
local composition of a binary fluid or another local order
parameter. The form of eq. (7) comes from the Helfrich
Hamiltonian for a lipid bilayer [13], where φ represents
the height fluctuations of the membrane about its average
height. The term κ is the bending rigidity and the term σ
is the surface tension. Still at the static level, there are a
number of choices of the coupling of the inclusion to the
field φ

K(r) = δ(r), (8)

K(r) = d · ∇δ(r), (9)

K(r) = ∇2δ(r). (10)

The coupling (8) is just a localized magnetic field, that in
eq. (9) is a dipole (two fields of opposite sign close to each
other) and eq. (10) arises in lipid membrane physics and
represents a coupling to the membrane curvature, tend-
ing to induce the membrane to curve upwards or inwards.
This sort of coupling arises for proteins whose structures
are different in the upper and lower leafs of the mem-
brane bilayer and thus cause the membrane to become
locally curved. For the dynamics there are a number of
basic models that one can consider [14],

R(r) = δ(r), (11)

R(r) = −∇2δ(r), (12)

R(r) =
1

(2π)2

∫

dk
exp(ik · r)

4η|k|
. (13)

The dynamical operator of eq. (11) corresponds to the sim-
plest form of dissipative dynamics one can write down for
a system whose total order parameter φ = 1

V

∫

V
drφ(r)

is not conserved (also referred to as model A dynamics).
This could apply to cases such as spin systems where φ
represents the local magnetization, or the local phase or-
dering parameter in lipid systems (solid, gel, liquid). The
operator in eq. (12) corresponds to the simplest dynamics
where the total order parameter is conserved, this should
be the case for systems where φ represents the local chem-
ical composition and where the total number of each type
of particle is conserved (model B dynamics). The operator
of eq. (13) is the Oseen hydrodynamic kernel for mem-
brane sheets, the field describes the height fluctuations of
lipid membranes driven by a surrounding fluid of viscosity
η. In eq. (13) the Oseen hydrodynamic kernel is defined
via its (two-dimensional) Fourier transform.
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2.3 General analysis of drag forces

With the explicit choice of the Hamiltonian in eq. (1), the
equation of motion of the field is

∂φ(r)

∂t
= −RΔφ(r) + hRK†(r − Q(t)) + η(r, t), (14)

where K†(r) = K(−r).
We now decompose the field into its average part and

its fluctuating part φ = 〈φ〉 + ψ, these two components
obey the evolution equations

∂〈φ(r)〉

∂t
= −RΔ〈φ(r)〉 + hRK†(r − Q(t)), (15)

∂ψ(r)

∂t
= −RΔψ(r) + η(r, t). (16)

We thus see that the mean value of the field φ depends
on the position of the inclusion but the fluctuations about
this mean value are independent of the inclusion. We now
write the inclusion position as Q(t) = (0, vt) and we write
the mean value of the field φ as

〈φ(r, t)〉 = g(x, z − vt, t). (17)

In the coordinate system r = (x, z′ = z− vt) the equation
for g is

∂g

∂t
− v

∂g

∂z′
= −RΔg + hRK†(r). (18)

The Fourier transform of g defined as

g̃(k) =

∫

drg(r) exp(−ik · r) (19)

obeys [15]

∂g̃

∂t
− ikzvg̃ = −R̃Δ̃g + hR̃K̃†. (20)

In the steady-state regime we can ignore the temporal
derivative above and find

g̃(k) =
hR̃(k)K̃(−k)

R̃(k)Δ̃(k) − ikzv
. (21)

In the coordinate system moving with the inclusion the
force is given by

〈f〉 = h
∂

∂z′
Kg|r=0 =

h

(2π)d

∫

dkikzK̃(k)g̃(k), (22)

and putting eqs. (21) and (22) together then yields

〈f〉 =
h2

(2π)d

∫

dk
ikzR̃(k)K̃(k)K̃(−k)

R̃(k)Δ̃(k) − ikzv
. (23)

For small v this gives

〈f〉 = −λv, (24)

where the coefficient of friction λ is given by

λ =
h2

(2π)d

∫

dk
k2

zK̃(k)K̃(−k)

R̃(k)Δ̃(k)2
. (25)

In the case where the system is isotropic, that is K̃, R̃ and
Δ̃ are functions of k = |k|, we find

λ =
h2

(2π)dd

∫

dk
k2K̃(k)2

R̃(k)Δ̃(k)2
. (26)

We can also analyze the case where the insertion is
inserted at a time t = 0 and see how the force evolves in
time. This case is especially interesting when the corre-
sponding steady-state quantities turn out to be divergent.
Here it is convenient to work with the Laplace transform of
the average force defined as f(s) =

∫ ∞

0
dt, exp(−st)f(t).

Using the fact that f(0) = 0, we can solve eq. (18) by
Laplace transforming to give

〈f(s)〉 =
h2

s(2π)d

∫

dk
ikzR̃(k)K̃(k)K̃(−k)

R̃(k)Δ̃(k) + s − ikzv
. (27)

The static result eq. (23), when it is finite, is recovered
from the pole at s = 0 in eq. (27). In the limit of small
v we can define a time-dependent friction coefficient λ(t)
via 〈f(t)〉 = −λ(t)v. The Laplace transform of λ(t) is then
given by

λ(s) =
h2

s(2π)d

∫

dk
k2

zR̃(k)K̃(k)K̃(−k)

(R̃(k)Δ̃(k) + s)2
(28)

and when the system is isotropic this can be written as

λ(s) =
h2

s(2π)dd

∫

dk
k2R̃(k)K̃2(k)

(R̃(k)Δ̃(k) + s)2
. (29)

Finally it is interesting to ask under what conditions a
force can be generated in a direction perpendicular to the
direction of the insertion’s uniform motion in two or more
dimensions. The calculations above can be easily extended
to show that the force in the direction x, say, is given by

〈f⊥〉 =
h2

(2π)d

∫

dk
ikxR̃(k)K̃(k)K̃(−k)

R̃(k)Δ̃(k) − ikzv
. (30)

Note that this Hall-like effect can be analyzed for the
forces on vortices in superconductors, however the evalu-
ation of the force in this magnetic context requires a sub-
tle analysis of the time-dependent Ginzburg-Landau equa-
tions [16–18]. In our problem the interaction between the
inclusions and the field is via a pure potential so the evalu-
ation of the corresponding forces is much more straightfor-
ward. In an isotropic system it is clear that 〈f⊥〉 = 0. The
perpendicular friction coefficent is given via 〈f⊥〉 ∼ −λ⊥v
for small v as

λ⊥ =
h2

(2π)d

∫

dk
kxkzK̃(k)K̃(−k)

R̃(k)Δ̃2(k)
. (31)
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An interesting example of where this perpendicular fric-
tion coefficient can be non-zero is where the interaction
term takes a dipolar form K̃(k) = −id ·k, while the other
operators remain isotropic, in this case we find

λ⊥ =
2h2dxdz

(2π)d

∫

dk
k2

xk2
z

R̃(k)Δ̃2(k)
, (32)

and thus see that it can be non-zero when the dipole has
non-zero components in the direction of the motion and
perpendicular to the motion. For a fixed dipole modu-
lus, the magnitude of the perpendicular force is maximal
when the dipole is orientated at 45◦ to the direction of
the movement. We will demonstrate the existence of this
rather odd perpendicular force later on in simulations of
the two-dimensional Ising model.

2.4 Regularization of divergences in the model

The integrals appearing in eqs. (23) and (25) may diverge.
To be more specific, we will focus on the friction coefficient
for an isotropic system. The divergences depend on the
dimension d of the system and the operators Δ, R and K.
For small k we will take them of the form

Δ̃(k) ∼ kδ, (33)

R̃(k) ∼ kρ, (34)

K̃(k) ∼ kα. (35)

We find that the integral in eq. (25) is infrared divergent
when d < dc, with dc given by

dc = 2δ + ρ − 2α − 2. (36)

We note that dc increases: i) as δ increases, i.e. long-
distance excitations cost less energy, ii) ρ decreases, i.e.
long-distance modes relax more quickly iii) when α de-
creases, i.e. when the coupling of the inclusion to the field
is long range. In the case where the drag coefficient is
infrared divergent, it is regularized by cutting off the k
integration at an infrared cut-off kmin = π/L, where L is
the linear system size. For d < dc we find

λ ∼ Ldc−d. (37)

As should be expected the divergence of the friction
coefficient also shows up in a non-analytic behavior of the
average drag force at small v and one can show that

〈f〉 ∼ v1− dc−d
ρ+δ−1 , (38)

when d < dc, under the conditions ρ + δ > 1 and (dc −
d)/(ρ + δ − 1) < 2.

Finally there is another way to regularize the infrared
divergence; we can measure the friction coefficient at a
finite time. We expect that the friction coefficient will grow
with the time as

λ(t) ∼ tφ, (39)

and one can compute the exponent φ using the Laplace
transform (29). Making the change of variable k =
s1/(ρ+δ)q, and noting that the Laplace transform of tφ is
proportional to s−(1+φ), we obtain

φ =
dc − d

ρ + δ
, (40)

where again we assume that ρ + δ > 1.
In general the expressions given above for the drag

force can also exhibit ultraviolet divergence which must be
regularized. There are two possible physical length scales
which regularize the corresponding integrals:

i) The field theory has a natural cut off k = π/a0,
where a0 is a length scale below which the field does not
fluctuate or beyond which its fluctuations are strongly
suppressed. This cut off scale can be imposed by hand
and taken to correspond to a molecular scale, for example
the lipid size in lipid membrane bilayers, or because the
Hamiltonian function Δ̃ has corrections at higher order in
k than its low k form given in eq. (35).

ii) The size of the inclusion a gives a cut off k =
π/a, for instance instead of having a point-like magnetic

field inclusion where K̃ = h, one can have a Gaussian-
distributed field smeared over a region of size a with

K̃ = h exp(−k2a2

2 ). This means that the k integration is
effectively cut off at k = π/a. For the purposes of this
paper, therefore, we will take the cut off to be kmax =
min{π/a0, π/a}. However in most cases of interest it is
usually a which is the larger of these two ultraviolet length
scales.

The conclusion of this analysis is that when d < dc

the results we obtain are dominated by the long-distance
properties of the theory and we see a diverging friction
coefficient as ξ → 0. However if d > dc the friction co-
efficient becomes strongly dependent on the ultraviolet
cut off, for instance on the size of the inclusion. This
ultraviolet-dominated regime thus lacks the universality
of the infrared-dominated regime and we must be careful
in our choice of model and regularization to obtain phys-
ically meaningful results.

2.5 Force fluctuations

Here we will consider the statistical properties of the fluc-
tuations of the force about its mean value. Depending on
the system, these fluctuations may be measurable and
could provide a method for determining some of the ef-
fective parameters describing the system. We define the
fluctuating component of the force as

δf = f − 〈f〉. (41)

This fluctuating component can be written in terms of the
fluctuating component of the field ψ defined in eq. (16)
and is given by

δf = h
∂

∂z
Kψ|r=Q(t). (42)
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In the steady-state regime the correlation function of the
field ψ is given by

〈ψ(r, t)ψ(r′, t′)〉 = C(r − r′, t, t′)

= T

∫

duΔ(r − u) exp(−|t − t′|ΔR)(u − r′). (43)

Using this, we find that the correlation function for the
force fluctuation is given by

〈δf(t)δf(t′)〉=
Th2

(2π)d

∫

dk k2
z

K̃(k)K̃(−k)

Δ̃(k)

× exp
(

−|t − t′|Δ̃(k)R̃(k) + ikzv(t − t′)
)

.

(44)

The equal time correlation function is thus given by

〈δf(0)δf(0)〉 =
Th2

(2π)d

∫

dk k2
z

K̃(k)K̃(−k)

Δ̃(k)
. (45)

and is independent of the velocity v. We also see that there
is a fluctuation-dissipation–like relation relating the zero-
velocity force fluctuations to the linear friction coefficient:

∫ ∞

0

dt〈δf(t)δf(0)〉|v=0 = Tλ. (46)

In general any measurement of a force will not be instan-
taneous and will depend on the temporal resolution of the
experimental set up and will thus represent force aver-
aged over a characteristic time scale Tm associated with
the force measurement apparatus. We define the tempo-
rally averaged force over the time window Tm as

fm =
1

Tm

∫ Tm

0

f(t)dt, (47)

clearly we have 〈fm〉 = 〈f〉 and the variance at zero ve-
locity σ2

m = 〈(fm − 〈f〉)2〉|v=0 is given, for large Tm, by

σ2
m =

2Tλ

Tm
. (48)

3 Numerical simulations of drag in the Ising

model

In this section we perform numerical simulations of drag
forces on inclusions in the Ising model. This is an example
of an interacting theory where the drag forces predicted
in free-field theories should also occur. Our simulations
in fact show that, despite their approximative nature in
the context of interacting theories, our results for the free
Gaussian ferromagnet account well for the phenomenology
of drag observed in Ising systems. We will consider the
model on a d-dimensional cubic lattice of spacing a0, with
periodic boundary conditions, and denote by N the total
number of sites and spins. The Hamiltonian is given by

H = −J
∑

(i,j)

SiSj − h
∑

i

Ki−i0Si, (49)

where J > 0 is a ferromagnetic coupling between nearest-
neighbour spins and where hKi−i0 is the local field at site
i due to the inclusion whose position is denoted by i0.
Here the vector Ki is the discrete version of the operator
K of sect. 2. In what follows, in order to fully investigate
the various models discussed in the paper, but to keep
to a reasonable length and minimize the amount of com-
putation time, we will restrict our study to one and two
dimensions.

The system dynamics is defined in the following man-
ner: N elementary evolutions are performed during one
unit of time. An elementary evolution consists of:

– choosing a spin set (the way of choosing it depends on
the dynamics and will be given below),

– computing the energy change ΔH associated with flip-
ping this set of spins,

– flipping the spins with probability pf = 1/(1 +
exp(ΔH/T )) or leaving them unchanged with prob-
ability 1 − pf .

We simulate two types of dynamics:

– Non-conserved dynamics: only one spin is chosen ran-
domly at each step; thus the total magnetization is
not conserved. This choice is referred to as Glauber
dynamics.

– Conserved dynamics: at each step, two spins of oppo-
site sign are randomly chosen; the total magnetization
is conserved. This is a form of Kawasaki dynamics.

The inclusion moves in the z-direction with velocity v,
so i0,z(t) = int(vt/a0) (int denoting the integer part) i.e.
it performs one step every a0/v units of time. To measure
the force in the z-direction in a given configuration of the
spins system, we compute the energy H+ if the inclusion
was at the position i0 + z and H− if it was at the position
i0 − z, where z is the lattice link vector in the direction
z. The instantaneous force is then f = (H− − H+)/2a0.
Explicitly

f(t) =
1

2a0

∑

i

[Ki−(i0+z) − Ki−(i0−z)]Si. (50)

As we are interested in the average force, we average over
all Monte Carlo (MC) time steps after first achieving a
steady state in the simulation

〈f〉 = lim
TMC→∞

1

TMC

TMC
∑

t=1

f(t). (51)

We will present two kinds of plots of the results of
our simulations: i) the average magnetization in the rest
frame of the inclusion to see how the inclusion polarizes
the spins around it and how this polarization cloud is de-
formed by the inclusion’s movement; ii) the average drag
force as a function of the velocity (i.e. 〈f〉(v)). Note that
the polarization induced by the inclusion is basically a
generalization of the polaron in solid-state physics; the
polaron is the response of a body’s polarization field due
to the presence of an electron and modifies the dynamical
properties of the electron [19,20].
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Fig. 1. Magnetization profile for the 1d Ising model about a local magnetic field at a single point moving with velocity v, for
Glauber (solid lines) and Kawasaki (dashed lines) dynamics.

3.1 Point-like magnetic fields in one and two
dimensions

Here we study the case where the inclusion creates a point-
like magnetic field: Ki−i0 = δi,i0 . We take h < 0, so that
the average magnetization is (positively) proportional to
the potential seen by the inclusion.

Figure 1 shows the magnetization profile for Glauber
and Kawasaki dynamics, for four different speeds (with
parameters β = 1, J = 1 and h = −10). When the parti-
cle is at rest, it sees a spherically symmetric potential, thus
is does not experience any net force. As the velocity in-
creases, the profile becomes asymmetric and its amplitude
decreases: the system has less time to react to the pres-
ence of the inclusion and thus the polaron is deformed
and becomes weaker. The main differences between the
two dynamics are i) the magnetization far from the parti-
cle is not zero with Kawasaki dynamics, because the total
magnetization must remain zero; ii) the polaron deforma-
tion appears to be larger with Kawasaki dynamics. The
mean force is plotted against the velocity in fig. 2; this
figure shows that the force has a linear dependence on

v for small v, reaches a maximum and then decreases as
1/v for large v. The 2d simulations give similar results
(figs. 3, 4). Note that in two dimensions we are in the
high-temperature regime before the ferromagnetic phase
transition (β = 1, J = 0.4, h = −6.66). These behaviors
are in agreement with our general results for free fields:
the asymmetric profile is responsible for the force and for
small v the asymmetry increases with v whereas for large
v the profile amplitude diminishes. As the deformation is
larger for Kawasaki dynamics, the force is larger.

The fits with our analytical results for model A and
B dynamics are performed by varying three parameters:
the cut-off and a dilatation for each axis of the Gaus-
sian model to fit the Ising case. In principal the cut-off
should be π and this is the value used in the fits for
Glauber dynamics in both 1 and 2 dimensions. The fits
for the cut-off in Kawasaki dynamics are 0.5 in 1d and 1
in 2d. The scaling of the y axis is due to the fact the the
Gaussian model has a linear response to the field which is
not the case in Ising systems (where the local magnetiza-
tion can saturate). Here the scaling of the amplitudes of
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Fig. 2. Dashed lines: average drag force f in the 1d Ising model as a function of v for Glauber (a) and Kawasaki dynamics (b).
Solid lines are the fits of model A (a) and model B (b) dynamics for the Gaussian ferromagnet.
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Fig. 3. Contour plot (color online) of the magnetization profile (polaron) for the 2d Ising model with Glauber dynamics about
a local magnetic field at a single point moving with velocity v. (high temperature phase: β = 1, J = 0.4, h = −6.66).
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Fig. 4. Dashed lines: average drag force f in the 2d Ising model as a function of v for Glauber (a) and Kawasaki dynamics (b).
Solid lines are the fits of model A (a) and model B (b) dynamics for the Gaussian ferromagnet (β = 1, J = 0.4, h = −6.66).
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Fig. 5. Drag force for dipoles perpendicular (solid line) and parallel (dashed line) to the motion for Glauber dynamics (β = 1,
J = 0.4, h = −6.66). Contour plot (color online) for two values of v for dipoles perpendicular (first line) and parallel (second
line) to the motion.

the drag were 2.34, 13, 5.75 and 53.5 for 1d Glauber, 1d
Kawasaki, 2d Glauber and 2d Kawasaki, respectively. Fi-
nally the rescaling of the v axis corresponds to the problem
of linking the time scales for the two problems and also
possible differences between the correlation length in con-
tinuous and discrete models (see the discussion in sect. 4).
The corresponding rescaling factors of the v’s were 0.32,
1.07, 0.17 and 0.63. These values are all order 1 and hence
reasonable.

3.2 Dipoles in two dimensions

Here, the inclusion interacts as a dipole: Ki−i0 = (δi,i0 −
δi,i0−u), where u is a unit vector giving the direction of
the dipole. Figure 5 shows the drag force for dipoles per-
pendicular (u = x) and parallel (u = z) to the direction of
motion for Glauber dynamics. We also show the contour
plots for the local magnetization profile for both cases, at
velocities v = 0 and v = 0.5. As seen from the force curves,
at slow speed the force does not depend on the orientation,
when the speed increases the force for the perpendicular
dipole becomes larger.

Finally, we compare the forces parallel and perpendic-
ular to the motion for a dipole orientated at 45◦ to the
direction of the motion (u = x + z) in fig. 6. The force
in the direction x is calculated in the same way as that
described above for the force in the direction z. We see
that the transverse force has the same order of magnitude
as the longitudinal force, and the same general form. Also
shown on the right is the corresponding contour plot of the
local magnetization generated by the dipole at rest and
for v = 0.5. Whereas at v = 0 the magnetization profile
appears antisymmetric about the direction of the dipole,
when the dipole moves it experiences a force which pushes

it to the left on the bottom right figure of fig. 5. This is be-
cause the leading component of the dipole barely sees the
polarization created by the lower component, whereas the
magnetization created by the leading component pushes
away the lower component.

4 The one-dimensional Ising model with

Glauber dynamics

In sect. 2 we have analyzed the drag on inclusions in free
fields. Our simulations in sect. 3 were however for the
Ising ferromagnet. We showed that the force measured in
these simulations could be remarkably well fitted by a free-
field theory. Here we show that the drag for a point-like
magnetic field in the one-dimensional Ising model with
Glauber dynamics [21] can be exactly solved within the
linear response regime, where βh ≪ 1, and that the force
so obtained is exactly of the form predicted from the model
A dynamics for the Gaussian ferromagnet.

As in our simulations we will compute the symmetrized
instantaneous force given by

〈f(t)〉 =
h

2

[

〈Si0(t)+1〉 − 〈Si0(t)−1〉
]

, (52)

where i0(t) = int(vt) and we have set the lattice spacing
a0 = 1. The time-dependent magnetic field in this problem
can be written as

hk(t) = h0δk,i0(t). (53)
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Fig. 6. Forces for a dipole orientated at 45◦ to the motion with Glauber dynamics. Solid line: average force perpendicular to
the motion; dashed line: force parallel to the motion (β = 1, J = 0.4, h = −6.66). Contour plot (color online) for two values
of v.

We will work in the regime where the applied field is small
and apply linear response theory to write

〈Sj(t)〉 = 〈Sj(t)〉0 + h
∑

k

∫ t

−∞

ds

〈

δSj(t)

δhk(s)

〉

0

δk,i0(s),

(54)
where 〈·〉0 indicates averaging in the absence of the field
h. We also assume that the dynamics of the system in the
absence of the field h evolves from a statistically homoge-
neous initial state such that

〈Si(t)〉0 = 〈Sj(t)〉0, (55)

for all i and j. Along with eq. (54) in eq. (52) this yields

〈f(t)〉

=
h2

2

∑

k

∫ t

−∞

ds

[〈

δSi0(t)+1

δhk(s)

〉

0

−

〈

δSi0(t)−1

δhk(s)

〉

0

]

δk,i0(t)

=
h2

2

∫ t

−∞

ds

[

〈

δSi0(t)+1

δhi0(s)

〉

0

−

〈

δSi0(t)−1

δhi0(s)

〉

0

]

. (56)

The response function for the unperturbed system is
defined by

R(i, j, t, s) =

〈

δSi(t)

δhj(s)

〉

0

, (57)

and for a system in thermal equilibrium we may write

R(i, j, t, s) = R(i − j, t − s), (58)

as we have spatial and time translation invariance and
thus

〈f(t)〉 =
h2

2

∫ t

−∞

ds[R(i0(t) − i0(s) + 1, t − s)

−R(i0(t) − i0(s) − 1, t − s)]. (59)

In addition, for a system in equilibrium, one has the fluc-
tuation dissipation theorem [22]

R(i, j, t, s) = βθ(t − s)
∂C(i, j, t, s)

∂s
= β

∂C(i − j, t − s)

∂s
,

(60)
for t > s, and where

C(i, j, t, s) = 〈Si(t)Sj(s)〉0 (61)

is the spin-spin correlation function. Therefore at thermal
equilibrium we find

〈f(t)〉 = −
βh2

2

∫ t

−∞

ds
∂

∂τ
(C(i0(t) − i0(s) + 1, τ)

−C(i0(t) − i0(s) − 1, τ))τ=t−s. (62)

The correlation function obeys the equation

∂

∂t
C(i, t) = −C(i, t) +

γ

2
(C(i + 1, t) + C(i − 1, t)) , (63)

where γ = tanh(2βJ) [21]. We now consider a system with
2L+1 spins at sites −L, . . . , 0 · · · , L and periodic bound-
ary conditions. We define the discrete Fourier transform
of C via

C(j) =

L
∑

k=−L

C̃(k) exp

(

2πijk

2L + 1

)

, (64)
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and thus the Fourier coefficients are given by

C̃(k) =
1

2L + 1

L
∑

j=−L

C(j) exp

(

−
2πijk

2L + 1

)

. (65)

The initial condition for eq. (63) is given by the equilib-
rium correlation function

C(i) = η|i|, (66)

where η = tanh(βJ). We can now use eq. (63) to express
eq. (62) in terms of its Fourier representation to find

〈f(t)〉 = −βih2

∫ t

−∞

ds
∑

k

C̃(k, (t − s))

×

[

1 − γ cos

(

2πk

2L + 1

)]

× sin

(

2πk

2L + 1

)

exp

(

2πik(i0(t) − i0(s))

2L + 1

)

. (67)

Now in the continuum limit where ξ ≫ 1 we write simply
that i0(t) = vt and use the solution

C̃(k, t) = C̃(k, 0) exp

(

−t

[

1 − γ cos

(

2πk

2L + 1

)])

, (68)

to obtain

〈f(t)〉 = βih2
∑

k

C̃(k, 0)
[

1 − γ cos
(

2πk
2L+1

)]

sin
(

2πk
2L+1

)

1 − γ cos
(

2πk
2L+1

)

− 2πikv
2L+1

.

(69)
The initial condtion eq. (66) along with (65) then gives

C̃(k, 0) =
1

2L + 1

L
∑

j=−L

η|j| exp

(

−
2πijk

2L + 1

)

=
1

2L + 1

1 − η2

1 + η2 − 2η cos
(

2πk
2L+1

)

=
1

2L + 1

1

cosh(2βJ)

1

1 − γ cos
(

2πk
2L+1

) , (70)

where we have taken the limit of large L and assumed
that η < 1 (i.e. non-zero temperature). Putting this all
together then yields

〈f(t)〉=
βih2

cosh(2βJ)(2L + 1)

∑

k

sin
(

2πk
2L+1

)

1 − γ cos
(

2πk
2L+1

)

− 2πikv
2L+1

.

(71)
Now the sum can be written as an integral for L large to
give

〈f(t)〉 =
βih2

2π cosh(2βJ)

∫ π

−π

dk
sin(k)

1 − γ cos(k) − ikv
. (72)
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Fig. 7. Drag force in one dimension for small field in an Ising
model with Glauber dynamics (crosses) versus analytical re-
sult, eq. (72) (solid line); β = 1, J = 1.5, h = 0.2.

We can recover the link with the continuum models stud-
ied here if we consider the limit where the inverse corre-
lation length m ≪ 1. Here we have

m = − ln(η) ∼ 2 exp(−2βJ). (73)

If we take m small the integral in eq. (72) is dominated
by its behavior at small k, in addition we have γ ∼ 1 −
2 exp(−4βJ) = 1 − m2/2, which yields

〈f(t)〉 =
βimh2

π

∫ π

−π

dk,
k

k2 + m2 − 2ikv
, (74)

which has the same form as that for model A dynamics
for a Gaussian ferromagnet.

The analytical result (72) has been compared with a
simulation; the results given fig. 7 show a good agreement
between them. We interpret the fact that the analytical
result overestimates the simulations result as a trace of a
nonlinear response in the field h.

5 Application to proteins in lipid membrane

5.1 General analysis

Here we will try and investigate some possible sources of
drag in lipid membrane models. A way of estimating the
diffusion constant of an insertion, such as a protein in a
lipid membrane, is via the Stokes Einstein relation

D =
kBT

λt
, (75)

where λt is the total friction on the protein. The Stokes-
Einstein relation is in fact only rigorously valid for a fric-
tion coefficient computed from the average velocity at
fixed force, i.e. via

f = λ〈v〉. (76)
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However, when the average value of the force is large com-
pared to its fluctuations, we should be in a limit where the
Stokes-Einstein relation using a friction coefficient com-
puted in the constant velocity ensemble gives a good es-
timate. Hence if the coupling to the membrane h is large,
the resulting average force will be large, O(h2) with re-
spect to the force fluctuations which are, from eq. (45)
O(h). However for this statement to be valid one needs to
be in a system where the linear-response regime is wide
enough such that the force still behaves as λv, even when
it is bigger than its fluctuations. This will clearly always
become the case for h sufficiently large. Of course, there
will be in general many other sources of drag in the prob-
lem (other fields, hydrodynamic effects, etc.). Thus the
results we present are valid in the case where i) the aver-
age force in the range of v where linear response applies is
bigger than the fluctuations of the force and ii) the drag
created by the field we are considering dominates over all
other drags. The range of validity of the results is thus
severely constrained. In what follows we do not claim to
explain the experimental literature on membrane inclu-
sion diffusion constants but rather try to show what types
of behavior could be generated for certain types of interac-
tion fields, their couplings to inclusion position and their
dynamics. Finally we should also mention that height fluc-
tuations of the membrane even when they are not coupled
to the position insertion can lead to an apparent slowing
down of diffusion [23] as the projected area of the mem-
brane is smaller than its physical area (within which the
protein diffuses), this means that the projection of the dif-
fusion will appear to be slowed down, we will not consider
this effect in what follows.

There are also many possible sources of drag which
should be taken into account, however when the drag
force computed here is large compared to the other drag
forces we can safely ignore the others. There are a number
of possible sources of drag in lipid membranes. The first
treatment of this problem was by Saffmann and Delbrück
(SD) [11] who computed the hydrodynamic drag by treat-
ing the low Reynolds number Navier Stokes equations for
a slab of flat 2d fluid containing a solid cylindrical inser-
tion. The movement of the fluid sets up a hydrodynamic
flow and the resulting friction on the cylinder is computed
using the stress tensor. The coupling to the bulk external
fluid is very important and is essential to find a finite re-
sult for the drag, as a purely two-dimensional treatment
gives a divergent result coming from the long-range na-
ture of hydrodynamic interactions in two dimensions. The
hydrodynamic drag computed by SD is given by

λhydro =
4πηm

[

ln
(

ηmh
ηwa

)

− γ
] , (77)

where a is the cylinder radius and ηm and ηw are the vis-
cosities of the membrane and surrounding fluids, respec-
tively. The term h represents the height of the cylinder or
membrane and γ ≈ 0.5772 is Euler’s constant. This for-
mula is valid in the regime where a ≫ h, i.e. for proteins
which are large relative to the membrane thickness and
when ηm ≫ ηw. The coupling of the 2d flow to the 3d fluid

is very important in this hydrodynamic treatment, for ex-
ample if there is a hard wall in the proximity of the fluid
membrane, the behavior of the diffusion constant changes
to D ∼ 1/a2 [24,25].

Recently in [26] a detailed experimental study, and
comparison of other results in the literature, of protein dif-
fusion constants seems to suggest that for membrane pro-
teins and peptides the diffusion constant scales as D ∼ 1/a
(which is consequently a much stronger dependence on
the protein radius than D ∼ ln(1/a) predicted by SD).
In [26] it is suggested that the apparent failure of the SD
formula may be due to the fact that the membrane is
quite heterogeneous on small length scales and that the
model of a perfect incompressible fluid is perhaps not well
adapted for small inclusions. It is also pointed out that
on larger length scales thermal fluctuations and undula-
tions may dissipate velocity gradients. Indeed extensive
numerical simulations have shown that the coupling of the
protein position to local membrane curvature (and hence
height fluctuations) reduces the diffusion constant of in-
clusions [27] and scaling arguments show that proteins
whose hydrophobic cores are mismatched with the equi-
librium thickness of the lipid bilayer also experience ad-
ditional drag forces [28]. The effect of mismatch is clearly
seen in some of the experimental studies reported in [26].

In the spirit of the comments of [26] and the study
of [28], we will tentatively examine various scenarios lead-
ing to drag forces on membrane inclusions which are lin-
early coupled to physical fields in the membrane. We
should bear in mind the limitations of this approach. First
it is clear that we are ignoring possible hydrodynamic
flows created by the movement of the inclusion. If sub-
stantial hydrodynamics flows are established by protein
movement, then the order parameter field φ (depending
on its precise nature) can be expected to be convected
with the flow. Clearly this effect is ignored in our study,
however for small inclusions where the inclusion pushes
past the local lipids, rather than entraining a hydrody-
namic flow, we expect this approximation to be good, at
least concerning orders of magnitude estimates. Secondly
there is also a nonlinear coupling between inclusion posi-
tion and the fluctuating field (due to the absence of the
field in the region of the inclusion). However if the lin-
ear coupling is sufficiently strong, the contribution of the
mean-field–like term we compute here should dominate
the drag due to nonlinear terms.

In d = 2, the friction coefficient (26) reads

λ =
h2

2π

∫ π/ac

0

dk,
k3K̃2(k)

R̃(k)Δ̃2(k)
, (78)

where ac is the short-distance cut-off scale corresponding
to the larger of the two scales a, the insertion size, and
a0, the underlying cut-off for the field fluctuations. In our
models, the operators will be of the forms of eqs. (33)–
(35). Here we give general expressions for the operator Δ,
the composed operator RΔ and the coupling operator K.
In order to be more precise, we write them in the dimen-
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sionful form (in terms of their Fourier transforms):

Δ̃(k) = μΔaδ′

0 kδ′

(k2 + m2), (79)

R̃(k)Δ̃(k) = τ−1
0 aρ+δ′+2

0 kρ+δ′

(k2 + m2), (80)

K̃(k) = μKaα
0 kα, (81)

where μΔ and μK are energies and τ0 is a microscopic
time scale associated with the dynamics. The notation
here is slightly different from the previous sections, where
the term m strictly denoted a mass defined by m2 = Δ̃(0),
and also corresponds to the inverse correlation length of
the field m = 1/ξ. In the Helfrich Hamiltonian, we can

write Δ̃ ∼ k2(k2 + m2) where m2 = σ/κ. Though m is
not a mass, in this case it still corresponds to the inverse
correlation length, we thus persist with the notation m.

Using these expressions in the integral above, we ob-
tain for the friction coefficient

λ =
τ0μ

2
K

2πμΔa2
0

h2(ma0)
2α−ρ−2δ′

gλ

(mac

π

)

, (82)

where the function gλ is defined by

gλ(x) =

∫ 1
x

0

dq
q3+2α−ρ−2δ′

(q2 + 1)2
. (83)

In the following, we assume that this integral is not in-
frared divergent, i.e. that 2δ′ + ρ − 2α < 4; this reads
d = 2 > dc with the critical dimension (36).

It now remains to determine how the amplitude of the
interaction h should be computed. It is clear that the value
of h should depend on the value of the size of the inclusion.
A simple, semi-macroscopic, way of doing this, proposed
in [10], is the following. The energy of interaction between
the field φ and the inclusion is easily computed from the
free field theory and is given by

ǫ = −
h2

2(2π)

∫ π
ac

0

dk
kK̃2(k)

Δ̃(k)
. (84)

We now expect that ǫ is a function of a and that for small a

ǫ(a) ∼ −2πγIa − πσIa
2, (85)

where γI and σI are effective (negative) line and surface
tensions for the inclusion in the membrane due to the in-
teraction with the field φ. Now if we assume that a is
small, in the sense that we can neglect the surface tension
term, equating eq. (84) and eq. (85), we find

2πγIa =
h2

2(2π)

μ2
K(a0m)2α−δ′

μΔ
gǫ

(mac

π

)

, (86)

where

gǫ(x) =

∫ 1
x

0

dq
q2α−δ′+1

q2 + 1
. (87)

Using the resulting expression for h in terms of γI and a,
we then obtain

λ =
4πγIaτ0gλ

(

mac

π

)

a2
0(ma0)ρ+δ′gǫ

(

mac

π

) . (88)

Before examining a number of models of proteins in-
serted into membranes, we will explore a few general con-
sequences of the above expression. Given that we expect
a and a0 to be small, we should consider the functions gλ

and gǫ in the limit x → 0. The integrals defining these
functions are finite (and thus independent of a) in the
cases where 2α−ρ−2δ′ < 0 and 2α− δ′ < 0, respectively.
In this case we find the generic behavior

λ ≈
4πγIaτ0gλ(0)

a2
0(ma0)ρ+δ′gǫ(0)

. (89)

In this scenario we see that the dependence of the friction
coefficient on the inclusion size is always linear and it has
a strong dependence on the correlation length of the field
φ. The scaling of the friction coefficient with the inclusion
size is λ ∼ a, if this drag dominates all other sources of
drag application of the Stokes-Einstein relation gives

D ∼
1

a
. (90)

Note that we will also recover this dependence on a if it is
the case that a < a0, i.e. the underlying cut-off of the field
φ is greater than the one corresponding to the inclusion
size. Note that, apart from the hydrodynamic case where
ρ = −1, ρ is positive or zero, therefore if 2α− δ′ < 0, then
2α − ρ − 2δ′ < 0 also. In the case where 2α − ρ − 2δ′ > 0
and which in most cases will also imply that 2α − δ′ > 0,
the integrals defining both gλ(x) and gǫ(x) will diverge
and we find

gλ(x) ∼
1

2α − ρ − 2δ′
1

x2α−ρ−2δ′
, (91)

gǫ(x) ∼
1

2α − δ′
1

x2α−δ′
, (92)

and thus

λ ≈
4πγIaτ0

a2
0

2α − δ′

2α − ρ − 2δ′

(

a

πa0

)ρ+δ′

. (93)

Again if this drag dominates, it gives a diffusion coefficient
scaling with inclusion size as

D ∼
1

aρ+δ′+1
. (94)

In this case we see a different dependence on the inclusion
size a, the physics of the problem is controlled by short-
distance behavior and the drag is independent of the cor-
relation length ξ = 1/m of the fluctuating field. A final
possible case is where 2α − ρ − 2δ′ < 0, but 2α − δ′ > 0,
in which case we find

λ ≈
4πγIaτ0gλ(0)(ma)2α−δ′

a2
0(ma0)ρ+δ′

2α − δ′

π2α−δ′
, (95)

this is a particularly interesting case as the friction coef-
ficient has a strong dependence on both the correlation
length of the field φ and on the inclusion size. Again if
this drag dominates the diffusion constant scaling with
inclusion size is

D ∼
1

a2α+1−δ′
. (96)
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We now discuss some specific models.

5.2 Insertion with curvature coupled to membrane
height fluctuations

In [27] the authors numerically investigated the diffusion
constant of inclusions in model membrane systems where
the inclusion tends to impose a preferred local curvature
on the membrane. In their model a quadratic coupling was
also considered. Here we consider the model with a simple
linear coupling. The inclusion is coupled to the membrane
height fluctuations, the Gaussian Hamiltonian of which Δ
is given by eq. (7), the dynamical operator R is given by
eq. (13) and K by eq. (10). After Fourier transforming, we

obtain Δ̃(k) = κk2(k2 + m2) (with m =
√

σ/κ), R̃(k) =

(4ηk)−1 and K̃(k) = −k2. In our general notation we have
δ′ = 2, α = 2 and ρ = −1 and we are in the case where
2α− δ′ = 2 and 2α− ρ− 2δ′ = 1. In terms of the physical
parameters of this model the drag coefficient for small
insertion size a is thus given by

λ =
32ηγIa

2

κ
, (97)

and the dominance of this drag would imply that

D ∼
1

a2
. (98)

We thus see that this result is quite insensitive to the
correlation length of the height fluctuations (and thus the
surface tension) assuming that they are large with respect
to the insertion size.

5.3 Insertion coupled to a non-conserved order
parameter

An insertion such as a protein or peptide can couple to
various physical fields in a lipid membrane other than the
height fluctuations. For instance in a lipid monolayer lo-
cal tilt angles of the lipid heads or tails may be changed
by the presence of an inclusion. Also if there are several
lipid phases such as liquid gel and solid, the inclusion may
prefer to be in one of these phases. This general idea can
be modelled by assuming that the inclusion couples lin-
early to the order parameter representing one of these
fields. The simplest Hamiltonian for this order parameter
has the form of that for the Gaussian ferromagnet where
Δ̃(k) ∝ k2 + m2. The simplest diffusive dynamics is given

by model A dynamics with R̃(k) ∝ 1 and a linear coupling

to the field φ gives K̃(k) = 1. This dynamical model does
not conserve the integrated field as there is no reason that
it should be conserved. Here, in our general notation, we
have δ′ = 0, α = 0 and ρ = 0 and we are thus in the
case where 2α − δ′ = 0 and 2α − ρ − 2δ′ = 0. We see
that we are in the marginal case for both functions gλ and
gǫ. Furthermore we can identify the time scale τ0 using
the diffusion constant for the dynamics of the field φ, D0,

via D0τ0 = a2
0, where a0 is the lipid size and D0 can be

estimated from the lipid translational diffusion constant
or lipid rotational diffusion constant, depending on the
field in question (for instance if the field in question de-
scribes the orientational order of the lipids, then the lipid
rotational diffusion constant could be used to give the ap-
propriate time scale). Here for small x we find

gλ(x) ≈ − ln(x) and gǫ(x) ≈ − ln(x), (99)

which leads to

λ ≈
4πγIa

D0
, (100)

and gives an estimation of the insertion diffusion constant:

D ≈
kBTD0

4πγIa
. (101)

5.4 Insertion coupled to a conserved order parameter

The insertion may also be coupled to a conserved field,
describing, for example, the local lipid composition in the
case where there are several lipid types. We take the same
Δ and K operator to describe the energy of the order
parameter describing local chemical composition. However
we now use a conserved dynamics: R is set by (12), giving

R̃(k) ∝ k2. We thus have δ′ = 0, α = 0 and ρ = 2, which
gives 2α − δ′ = 0 and 2α − ρ − 2δ′ = −2. The function gǫ

is unchanged but we find gλ ≈ 1/2 which gives

λ =
2πγIa

D0a2
0m

2 ln
(

π
ma

) , (102)

where we have again used D0τ0 = a2
0, and where D0 can be

estimated from the lipid translational diffusion constant.
This leads to the estimate

D =
kBTD0a

2
0m

2 ln
(

π
ma

)

2πγIa
(103)

for the protein diffusion constant. We should note that
even though there is a logarithmic correction, we would
expect to experimentally measure D ∼ 1/a, as the loga-
rithmic term would require decades of length scales (thus
leaving the realm of validity of the calculation) to detect.
Interestingly here, in contrast with the previous models,
we should see a strong dependence of D on the correlation
length of the field.

6 Conclusions

We have seen that inclusions which are linearly coupled
to classical fields with dissipative dynamics are subject to
drag forces which exhibit a rather rich behavior. Notably,
the drag force is a non-monotonic function of the inclusion
velocity v. Generically the force is a linear function of the
velocity at small v and is characterized by a friction co-
efficient λ. The force then attains a maximum value, and
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for large v decays as 1/v. The force is physically gener-
ated by the deformation of the polarization profile of the
field about the inclusion by the inclusions motion. This
phenomenon is analogous to the way in which electron
dynamics is renormalized by their associated polaron in
solid-state physics [19,20]. The linear coefficient of fric-
tion λ is of particular importance as it can be used to
estimate diffusion constants via the Stokes-Einstein rela-
tion and because it can exhibit divergent behavior when
the corresponding field theory is critical, i.e. has a diverg-
ing correlation length, for example at a critical demixing
transition.

The results we have presented are valid for free or
Gaussian field theories. We were able to compute the drag
for the one-dimensional Ising model for a weak inclusion-
field interaction but it would be interesting to go beyond
the Gaussian approximation to understand the physics of
drag forces for general interacting field theories. Having
said this, we note that the Gaussian model does seem to
capture most of the phenomenology seen in our simula-
tions of the one- and two-dimensional Ising model.

Finally the experimental measurement of these drag
forces presents an interesting challenge. It may be possible
to carry out experiments using atomic force microscopy or
magnetic force microscopy if the interaction between the
microscopic tip and the surface can be sufficiently well
characterized. Also, the thermal or critical Casimir force
predicted by Fisher and de Gennes [29] has recently been
successfully measured [30] in a binary fluid mixture at
criticality. It may be that the technical advances made
to carry out this measurement, the chemical treatment
to tune the interaction between the fluid components and
surfaces, and the optical force measurements could be ap-
plied to the study of the drag problem. We note also that,
beyond measurements of the average force, it would also
be interesting if the predictions made here about force
fluctuations could be verified experimentally.
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