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Diffusion of a particle quadratically coupled to a thermally fluctuating field

Vincent Démery*

Institut Jean Le Rond d’Alembert, CNRS and UPMC, Université Paris 6, UMR 7190, F-75005 Paris, France
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We study the diffusion of a Brownian particle quadratically coupled to a thermally fluctuating field. In the
weak-coupling limit, a path-integral formulation allows us to compute the effective diffusion coefficient in the
cases of an active particle, which tends to suppress field fluctuations, and of a passive particle, which only
undergoes field fluctuations. We show that the behavior is similar to what was previously found for a linear
coupling: an active particle is always slowed down, whereas a passive particle is slowed down in a slow field and
accelerated in a fast field. Numerical simulations show a good agreement with the analytical calculations. The
examples of a membrane protein coupled to the curvature or composition of the membrane are discussed, with a
focus on the room for anomalous diffusion.
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I. INTRODUCTION

Diffusion of an object interacting with its fluctuating
environment has recently received a lot of attention: ex-
perimental studies have investigated the cases of colloidal
beads diffusing along lipid bilayer tubes or through an actin
network [1], insulin granules diffusing in β-cells [2], or di-
electric colloids subject to random optical forces generated by
multiply scattered light [3]. A variety of behaviors have been
observed, most of the time including anomalous diffusion,
either in the mean-squared displacement or in the probability
distribution function. These observations call for a general
theoretical framework able to describe diffusion in a complex
environment. The considered systems can be cast into two
classes: if the object affects its environment, as in the first and
second examples, it is called active; if it does not, as in the
third example, it is called passive.

Among all the investigated systems, much effort has been
concentrated on membrane proteins. One of the first theoretical
studies is due to Saffman and Delbrück [4], who computed
the hydrodynamic drag felt by a protein moving at constant
velocity in a membrane; using the Einstein relation [5], it
allows us to determine the diffusion coefficient. However,
this calculation only gives a weak logarithmic dependence
of the diffusion coefficient on the protein size that was
contradicted later by accurate experiments [6]. Explaining
the observed diffusion coefficient of membrane proteins has
thus remained a major theoretical challenge. The numerous
analytical and numerical investigations of the effective diffu-
sion coefficient aim at taking into account two new effects:
the geometrical penalty of free diffusion on a ruffled surface
[7–12] and the interaction of the protein with a local parameter,
most of the time the membrane curvature [7,10–12] but also its
height [13]. These works have shown that the protein diffusion
coefficient is reduced, whereas it is increased if the protein
action on the membrane is neglected [11,12]. This result is
derived when the membrane equilibrates much faster than the
protein moves; this is called the adiabatic limit and it is the
biologically relevant one [12].
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In previous studies [14–17], we moved toward a more
general model that aims at describing not only membrane
proteins but also every kind of object moving in a fluctuating
environment, such as the ones presented sooner; a very generic
picture is given in Fig. 1. In this model, a particle moving in
a space of arbitrary dimension is linearly coupled to a scalar
Gaussian field. We first computed the drag force felt by the
object when it is pulled at constant velocity [14,15]. Naively,
we thought the Einstein relation would allow us to deduce the
diffusion coefficient, but this is not the case since the drag is
computed at constant velocity whereas the Einstein relation
needs the drag at constant force. To clarify this issue, we
computed the diffusion coefficient in the adiabatic limit, where
the field is much faster than the particle, and we showed that
it can indeed be inferred from the drag coefficient computed
at constant velocity [16,17]. In this limit, we showed that an
active particle is always slowed down by its coupling to the
field, whereas a passive particle is always accelerated: this
corresponds to what was observed for the motion of membrane
proteins [11,12]. However, in a more general theory one has
to consider the nonadiabatic limit, where we showed that the
previous statement breaks down: in a slow field, a passive
particle is slowed down as well [17].

This first generalization needs to be further extended in
order to be able to model more couplings between the object
and the environment. For instance, when a protein is coupled to
membrane curvature, there is a superposition of two effects: the
protein may impose a spontaneous curvature to the membrane,
and, if it is stiffer than the membrane, it can also reduce
the membrane fluctuations. Whereas the first effect is well
described by a linear interaction between the protein and the
membrane, the second one needs a quadratic interaction. What
was proved for the linear interaction needs to be investigated
for the quadratic interaction: this article fills this gap. The drag
force at constant velocity has already been computed for the
quadratic interaction [18].

In this article, we introduce the general model in Sec. II
and explain how it describes a protein coupled to membrane
curvature or composition. Analytical calculations are per-
formed in Sec. III. First, we derive the exact path-integral
representation of the particle motion. Second, we show that in
the weak-coupling limit it reduces to an effective dynamics for
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the particle, containing a memory term. Third, we address the
adiabatic limit, derive a Markovian dynamics, and compute the
effective diffusion coefficient; it appears that it can be deduced
from the drag computed at constant velocity. Fourth, we
compute the effective diffusion coefficient for a weak coupling
but outside the adiabatic limit and show that an active particle is
always slowed down whereas a passive particle is slowed down
in a slow field and accelerated in a fast field. These results for
a quadratic coupling, albeit very similar to those for a linear
coupling, are noteworthy; moreover, to get to the effective
diffusion equation, the quadratic coupling requires techniques
that are detailed here. Analytical results are compared to
numerical simulations on a simple unidimensional system in
Sec. IV. The possibility for anomalous diffusion is discussed
in Sec. V.

II. MODEL

A. General model

Our general model is relatively simple but contains several
adjustable parameters that allow us to use it to model many
different systems. Some of these are given as examples at the
end of this section.

This model is close to the one presented in Ref. [17], with
the exception that the coupling with the field here is quadratic
in the field, making the interaction “fluctuations-induced.” This
quadratic coupling has already been introduced in Ref. [18],
albeit in a less general formulation, where the particle was
pulled at constant velocity; here the particle is submitted to a
thermal noise.

We consider a particle located at x in a d-dimensional space,
with a quadratic coupling to a Gaussian field φ( y). The energy
of the particle-field system is given by

H [φ,x] = 1

2

∫
φ( y)[�φ]( y)d y + h

2
[Kφ](x)2. (1)

The notations used for functional operators are defined in
Appendix A. The first term is the quadratic energy of a free
field, and the operator � gives the shape of the field we
consider. The second term is the quadratic coupling between
the field and the particle, the particle shape is defined by the
operator K , and h is the coupling constant. The pure Casimir
interaction where the particle suppresses the field fluctuations
is obtained in the limit h → ∞. The operators � and K are
translation-invariant and isotropic (cf. Appendix A).

We start with an overdamped Langevin equation for the
whole system, the equilibrium of which is thus given by the
Gibbs-Boltzmann statistics. The particle position evolves as
follows:

ẋ(t) = −κx

δH

δx
[φ( y,t),x(t)] + √

κxη(t), (2)

= −hκx

2
∇[(Kφ)2](x(t),t) + √

κxη(t). (3)

κx is the mobility of the particle and η(t) is a Gaussian white
noise with correlator

〈η(t)η(t ′)T〉 = 2T δ(t − t ′)1. (4)

FIG. 1. (Color online) Particle trajectory in a fluctuating field; it
is quadratically coupled to the field and sees the effective potential
h

2 φ( y,t)2.

The superscript “T” denotes the transposition and 1 is the
identity matrix. The field evolution is

φ̇( y,t) = −κφ

(
R

δH

δφ

)
[φ( y,t),x(t)] + √

κφ(
√

Rξ )( y,t), (5)

= − κφ[(R�φ)( y,t)

+h(Kφ)(x(t),t)(RKδ)( y − x(t))]

+√
κφ(

√
Rξ )( y,t). (6)

κφ is the “mobility” (or evolution rate) of the field, R is
a translation-invariant isotropic operator defining the field
dynamics, and ξ ( y,t) is a functional Gaussian white noise
with correlator

〈ξ ( y,t)ξ ( y′,t ′)〉 = 2T δ( y − y′)δ(t − t ′). (7)

To take into account the case of a passive particle, i.e., a
particle that does not affect the field, we introduce a feedback
parameter ζ in Eq. (6) that becomes

φ̇( y,t) = −κφ[(R�φ)( y,t)ζh(Kφ)(x(t),t)(RKδ)( y − x(t))]

+√
κφ(

√
Rξ )( y,t). (8)

The previous equation is recovered with ζ = 1, whereas a
completely passive particle corresponds to ζ = 0. Except for
ζ = 1, the dynamics does not satisfy detailed balance, and the
system is out of equilibrium. A trajectory of the particle-field
system is given as an example in Fig. 1.

In this paper, we will focus on the effective or late-time
diffusion coefficient, defined by

Deff = lim
t→∞

〈[x(t) − x(0)]2〉
2dt

. (9)

Of course, this number is only defined if the diffusion is nor-
mal, and we will restrict ourselves to this case here. However,
it can provide a hint as to the kind of diffusion: Deff = 0
indicates subdiffusion and Deff = ∞ signals superdiffusion.
Without coupling, the bare diffusion coefficient is

Dx = T κx. (10)
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B. Examples

Our model applies to many systems in which the presence of
an inclusion penalizes the fluctuations of an order parameter in
its environment. In our examples, the inclusion is a membrane
protein that can be coupled to the membrane curvature or
composition. The dimension of the space accessible to the
protein is d = 2.

The case of a protein affecting the curvature has been
extensively discussed [7–12,19,20]. First, we define the free
field quantities: the membrane height corresponds to our field
φ( y,t) and its free field energy is given by

H0[φ] = 1

2

∫
[κm[∇2φ( y)]2 + σ [∇φ( y)]2]d y, (11)

where κm is the membrane bending modulus and σ its surface
tension. In our formalism, the corresponding � operator is
given in Fourier space by

�̃(k) = κmk2(k2 + m2), (12)

where m = √
σ/κm is the inverse of the correlation length l.

The protein tries to impose its spontaneous curvature, giving
rise to the coupling

Hint[φ,x] = κp

2
[∇2φ(x) − 2Cp]2 − κm

2
[∇2φ(x)]2, (13)

where Cp is the spontaneous protein curvature and κp is its
bending rigidity. Although in most of the studies the interaction
has a nontrivial shape, we need to consider it pointlike here.
The size of the protein can be introduced as an effective cutoff
at the end of the computation. This interaction term can be
decomposed into a linear contribution, which tends to deform
the membrane, plus a quadratic contribution, which tends to
suppress its fluctuations. The case of a linear interaction has
been treated in Ref. [17], and here we are only interested in
the quadratic term. Physically, this corresponds to a tough but
flat protein: �κ = κp − κm > 0, Cp = 0, and the interaction is
defined by

h = �κ, K̃(k) = k2. (14)

Finally, the membrane dynamics is given by the Oseen
hydrodynamic tensor [21],

R̃(k) = 1

4η|k| , (15)

where η is the viscosity of the surrounding fluid. The effect of
projection due to the diffusion on a ruffled surface [7–12] is
neglected here.

Lipid membranes are made of several kinds of lipids, and
proteins can also be coupled to the composition field φ [22]
that fluctuates on growing length scales as the system is tuned
close to the miscibility transition [23]. The composition field
is ruled by the following operators [22]:

�̃(k) = k2 + m2, (16)

K̃(k) = 1, (17)

R̃(k) = k2. (18)

The operator R ensures that the average composition is
conserved. Again, m is the inverse correlation length and goes

to zero close to the miscibility transition as

m = l−1 ∼ (1 − T/Tc)ν, (19)

where Tc is the miscibility temperature and ν = 1 is the ex-
ponent observed experimentally on giant unilamellar vesicles
[23]. The interaction between two proteins has been calculated
exactly at the critical point in Ref. [24].

Proteins can be coupled to other membrane fields such as
the local membrane thickness [13]. These parameters can be
advected, or not, by the flow created by the protein motion.
This effect, discussed in Refs. [25,26], is neglected here.

III. ANALYTICAL CALCULATIONS

A. Path-integral formalism and effective action

The evolution of the particle-field system, which is com-
pletely defined by Eqs. (3), (4), (7), and (8), can be cast in
a path-integral formulation. Following the procedure used in
Refs. [17,27] with the Itō convention, the partition function for
the whole system is of the form

Z =
∫

exp
(−S0[x, p] − S

φ

0 [φ,ψ] − Sint[x, p,φ,ψ]
)

× [dx][d p][dφ][dψ]. (20)

p(t) and ψ( y,t) are the response fields [27] associated,
respectively, with x(t) and φ( y,t), and the action contains
three terms. S0[x, p] is the action of the pure Brownian motion
(i.e., without interaction with the field) and reads [17]

S0[x, p] = −i

∫
p(t) · ẋ(t)dt + Dx

∫
p(t)2dt. (21)

The free field action is of the same form:

S
φ

0 [φ,ψ] = −i

∫
ψ( y,t)[φ̇( y,t) + κφ(R�φ)( y,t)]d y dt

+ T κφ

∫
ψ( y,t)(Rψ)( y,t)d y dt. (22)

Finally, the interaction action couples the particle and the field:

Sint[x, p,φ,ψ] = −i
hκx

2

∫
p(t) · ∇([Kφ]2)(x(t),t)dt

− iζhκφ

∫
(Kφ)(x(t),t) (KRψ) (x(t),t)dt.

(23)

To get an effective action Seff
int for the particle, we integrate

over (φ,ψ):

exp
(−Seff

int [x, p]
) =

∫
exp

(−S
φ

0 [φ,ψ] − Sint[x, p,φ,ψ]
)

× [dφ][dψ]. (24)

This integral is quadratic and can be computed. We need the
following formula: for a random Gaussian vector X and a
matrix A,

〈exp(XTAX)〉X = det(1 − 2A〈XXT〉)−1/2 (25)

= exp
[− 1

2 tr(log[1 − 2A〈XXT〉])]. (26)

We use it considering (φ,ψ) as a Gaussian random variable
weighted by S

φ

0 , the interaction action Sint[x, p,φ,ψ] playing

052105-3
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the role of XTAX. Fourier transforming the fields in space
allows us to write the interaction action

Sint[x, p,φ,ψ] =
∫

[Ãφφ(−k,−k′,t,t ′)φ̃(k,t)φ̃(k′,t ′)

+ Ãφψ (−k,−k′,t,t ′)φ̃(k,t)ψ̃(k′,t ′)]

× dk dk′

(2π )2d
dt dt ′, (27)

where

Ãφφ(k,k′,t,t ′) = −hκx

2
p(t) · (k + k′)K̃(k)K̃(k′)

× e−i(k+k′)·x(t)δ(t − t ′), (28)

Ãφψ (k,k′,t,t ′)=−iζhκφK̃(k)K̃(k′)R̃(k′)e−i(k+k′)·x(t)

× δ(t − t ′). (29)

We then need the free field correlation functions that are
computed in Appendix B:

C̃φφ(k,k′,t,t ′) = 〈φ̃(k,t)φ̃(k′,t ′)〉 (30)

= T

�̃(k)
e−κφ |t−t ′|R̃(k)�̃(k)(2π )dδ(k + k′), (31)

C̃φψ (k,k′,t,t ′) = 〈φ̃(k,t)ψ̃(k′,t ′)〉 (32)

= ie−κφ |t−t ′|R̃(k)�̃(k)θ (t − t ′)(2π )dδ(k + k′).
(33)

θ (t) is the Heaviside function with θ (0) = 0 since we use the
Itō convention. We introduce the operator

M = AφφCφφ + AφψCψφ, (34)

whose Fourier transform reads

M̃(k,k′,t,t ′) = he−i(k+k′)·x(t)−κφ |t−t ′|R̃(k′)�̃(k′)K̃(k)K̃(k′)

×
[
−T κx

2

p(t) · (k + k′)
�̃(k′)

+ ζκφR̃(k′)θ (t ′ − t)

]
. (35)

The formula (26) gives the effective interaction action as

Seff
int [x, p] = 1

2 tr [ log(1 + 2M[x, p])]; (36)

it allows us to write the partition function

Z =
∫

exp
(−S0[x, p] − Seff

int [x, p]
)
[dx][d p]. (37)

This expression is exact and constitutes our first result.
The logarithm appearing in the interaction action (36)

makes it very difficult to handle; its signification is discussed
later. To go further, we have to expand the logarithm; this can
be done for a small coupling h 	 1.

B. Effective particle dynamics

In the weak interaction limit (h 	 1), a simpler expression
can be obtained by expanding the effective interaction action
(36) in powers of the coupling constant h. We start by

developing the logarithm it contains in powers of M , which is
proportional to h:

log(1 + 2M) = 2M − 2M2 + O(h3). (38)

Now, the trace can be taken explicitly:

tr(M) =
∫

M̃(k,−k,t,t)
dk

(2π )d
dt = 0, (39)

since θ (0) = 0 with our convention. The fact that the first term,
proportional to h, does not contribute is not surprising: to feel
the field, the particle must interact with it at least twice. For
the second term, we need

tr(M2) =
∫

M̃(k,k′,t,t ′)M̃(−k′,−k,t ′,t)
dk dk′

(2π )2d
dt dt ′

= h2T κx

∫
ei(k+k′)·[x(t)−x(t ′)]−κφ [R̃(k)�̃(k)+R̃(k′)�̃(k′)]|t−t ′|

×
(

ζκφ p(t) · (k + k′)
R̃(k)

�̃(k′)
θ (t − t ′)

− T κx

4

p(t) · (k + k′) p(t ′) · (k + k′)
�̃(k)�̃(k′)

)
×K̃(k)2K̃(k′)2 dk dk′

(2π )2d
dt dt ′. (40)

This expression has been obtained after several variable
changes on the different terms. The action at the order h2

is thus of the form

Seff
int,2[x, p] = − tr(M2)

= i

∫
t>t ′

p(t) · F(x(t) − x(t ′),t − t ′)dt dt ′

+ T

2

∫
p(t)TG(x(t) − x(t ′),t − t ′) p(t ′)dt dt ′,

(41)

where

F(x,t) = iζh2T κφκx

∫
(k + k′)

K̃(k)2K̃(k′)2R̃(k)

�̃(k′)

× ei(k+k′)·[x(t)−x(t ′)]−κφ [R̃(k)�̃(k)+R̃(k′)�̃(k′)]|t−t ′| dk dk′

(2π )2d

(42)

and

G(x,t) = h2T κ2
x

2

∫
(k + k′)(k + k′)T K̃(k)2K̃(k′)2

�̃(k)�̃(k′)

× ei(k+k′)·[x(t)−x(t ′)]−κφ [R̃(k)�̃(k)+R̃(k′)�̃(k′)]|t−t ′ | dk dk′

(2π )2d
.

(43)

In the truncated interaction action (41), we recognize the
action associated with the effective evolution equation [17],

ẋ(t) =√
κxη(t) +

∫ t

−∞
F(x(t) − x(t ′),t − t ′)dt ′ + �(x(t),t),

(44)

where the noise �(x,t) has a correlator

〈�(x(t),t)�(x(t ′),t ′)T〉 = T G(x(t) − x(t ′),t − t ′). (45)
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This dynamics is of the same form as that obtained in
Ref. [17] for a linear coupling between the field and the
particle. The case of a linear coupling being simpler, the
effective dynamics is exact, whereas it is a weak-coupling
expansion here. This dynamics reveals a two-times interaction
with the field, at times t ′ and t . This is also the sense of the
h expansion performed in the effective action (36) to get the
effective dynamics: to restrict ourselves to two-times interac-
tions. Expanding further the logarithm in this action would
add more terms to the effective dynamics, corresponding to
four-times interactions, six-times interactions, etc.

C. Adiabatic limit

In the adiabatic limit, where the field is much faster than
the particle (κx 	 κφ), the field memory time reduces to zero
and the effective dynamics becomes Markovian. We follow
the procedure used in Ref. [16] and compute F and G to first

order in κx/κφ . For F, this amounts to writing

F(x(t) − x(t ′),t − t ′)
= (t − t ′)ẋ(t) · ∇F(0,t − t ′) + O([t − t ′]2). (46)

Integrating over t ′, we get to first order in κx/κφ ,∫ t

−∞
F(x(t) − x(t ′),t − t ′)dt ′

= −κx

κφ

ζh2T

2d

[ ∫
(k2 + k′2)K̃(k)2K̃(k′)2

�̃(k)�̃(k′)[R̃(k)�̃(k) + R̃(k′)�̃(k′)]

× dk dk′

(2π )2d

]
ẋ(t). (47)

For G, we write

G(x(t) − x(t ′),t − t ′) = G(0,t − t ′) + O(t − t ′), (48)

and we integrate over t ′ to get, again to first order in κx/κφ ,

G(x(t) − x(t ′),t − t ′) = δ(t − t ′)
κx

κφ

h2T κx

d

[ ∫
(k2 + k′2)K̃(k)2K̃(k′)2

�̃(k)�̃(k′)[R̃(k)�̃(k) + R̃(k′)�̃(k′)]
dk dk′

(2π )2d

]
. (49)

We recognize the same integral in Eqs. (47) and (49), so we
introduce

λ = h2T

2d

∫
(k2 + k′2)K̃(k)2K̃(k′)2

�̃(k)�̃(k′)[R̃(k)�̃(k) + R̃(k′)�̃(k′)]
dk dk′

(2π )2d
,

(50)

which allows us to write the effective evolution equation for
the particle to the order h2 in the coupling and κx/κφ in the
evolution rates,

ẋ(t) = −ζ
κx

κφ

λẋ(t) + √
κxη(t) +

√
κ2

x

κφ

λη′(t), (51)

where η′(t) is a Gaussian white noise with the same correlator
as η(t) (4).

We recognize the drag coefficient found in Ref. [18]. This
result is very similar to the case of a linear coupling [16]: in
the adiabatic limit, the drag coefficient allows us to derive a
Markovian effective dynamics; we have shown here that this
property also holds for a quadratic interaction and may thus
be universal.

With this dynamics, the effective diffusion coefficient is
easy to compute:

Dadia
eff = Dx

(
1 − (2ζ − 1)

κx

κφ

λ

)
. (52)

This expression indicates that the diffusion coefficient is
decreased for an active particle and increased for a passive
one, and corresponds to what was found for proteins coupled
to membrane curvature [11,12]. We show in the following that
this is only true in the adiabatic limit.

D. Diffusion coefficient outside the adiabatic limit

The effective diffusion coefficient can also be computed
outside the adiabatic limit; this was done for a linear coupling
in Ref. [16] for the active case and in Ref. [17] for the
general case. The path-integral method used in Ref. [17] can be
generalized and applied to the effective diffusion equation (44).

First, we put the functions F and G in the general form

F(x,t) = i

∫
eiγ (Q)·x−ω(Q)|t | f (Q)dQ, (53)

G(x,t) =
∫

eiγ (Q)·x−ω(Q)|t | g(Q)dQ, (54)

where in our case
Q = (k,k′), (55)

γ (Q) = k + k′, (56)

ω(Q) = κφ[R̃(k)�̃(k) + R̃(k′)�̃(k′)], (57)

f (Q) = h2Dxκφ

(2π )2d
γ (Q)

K̃(k)2K̃(k′)2R̃(k)

�̃(k′)
, (58)

g(Q) = h2DxT

2(2π )2d
γ (Q)γ (Q)T K̃(k)2K̃(k′)2

�̃(k)�̃(k′)
. (59)

In this form, the functions F and G are very similar to those
found in Ref. [17] for a linear coupling to the field. The
treatment that leads to the effective diffusion coefficient is thus
the same; we briefly recall it but refer the reader to Ref. [17]
for more details.

The average quadratic displacement between times 0 and t

is approximated to the order h2 by

〈x0(t)2〉 = 〈x0(t)2〉0
(
1 − 〈

Seff
int,2[x, p]

〉
0

)
− 〈

x0(t)2Seff
int,2[x, p]

〉
0, (60)
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where x0(t) = x(t) − x(0) and 〈·〉0 denotes the average over
the action of the pure Brownian motion S0[x, p]. It is shown
in Ref. [17] that 〈

Seff
int,2[x, p]

〉
0 = 0; (61)

thus we only need to compute 〈x0(t)2Seff
int,2[x, p]〉0. The

following averages are needed:

〈x0(t)2 p(t ′)eiγ (Q)·[x(t ′)−x(t ′′)]〉0

= −4Dxχ[0,t[(t
′)L([0,t[∩[t ′′,t ′[)γ (K)e−Dxγ (Q)2|t ′−t ′′ | (62)

and 〈x0(t)2 p(t ′) p(t ′′)Teiγ (Q)·[x(t ′)−x(t ′′)]〉0 = χ[0,t[(t
′)[−2χ[0,t[(t

′′) + 4DxL([0,t[∩[t ′′,t ′[)γ (Q)γ (Q)T]e−Dxγ (Q)2|t ′−t ′′ |. (63)

χI (t) is the characteristic function of the interval I ⊂ R and L(I ) is its length. We introduce an effective damping for the mode
Q:

ω̄(Q) = ω(Q) + Dxγ (Q)2. (64)

Using these expressions and computing the integrals over the interaction times in the long-time limit, we get the effective diffusion
coefficient:

Deff = Dx − 1

d

∫
2Dx[γ (Q) · f (Q) + T γ (Q)T g(Q)γ (Q)] − T tr[g(Q)]ω̄(Q)

ω̄(Q)2
dQ. (65)

In our case, it reads

Deff = Dx

[
1 − h2Dx

2d

∫
(k + k′)2K̃(k)2K̃(k′)2([2ζ − 1]κφ[R̃(k)�̃(k) + R̃(k′)�̃(k′)] + Dx[k + k′]2)

�̃(k)�̃(k′)(κφ[R̃(k)�̃(k) + R̃(k′)�̃(k′)] + Dx[k + k′]2)2

]
dkdk′

(2π )2d
. (66)

This expression, giving the effective diffusion coefficient of
a particle quadratically coupled to a Gaussian fluctuating field
outside the adiabatic limit, is our main result; we now discuss
some of its features. First, it looks very similar to the expression
obtained for a linear coupling in Ref. [17], which is not surpris-
ing since the effective evolution equations that are the starting
point of the calculation are very similar. The main qualitative
difference is that the effective diffusion coefficient Dx = T κx

stands in front of the correction, whereas it is the mobility κx

for a linear coupling. This is a hallmark of fluctuation-induced
effects, where the temperature plays a central role. This was
already observed in Ref. [18], where the drag coefficient was
found to be proportional to the temperature.

Secondly, the feedback parameter ζ plays the same role as
in the linear coupling case, and the consequences are thus the
same: the diffusion coefficient of an active particle is always
reduced by its coupling to the field, whereas for a passive parti-
cle it is reduced in a slow field and increased in a fast field. This
behavior is represented in Fig. 2, where the correction to the
diffusion coefficient is plotted against the parameters ζ and κφ .

IV. NUMERICAL SIMULATIONS

We perform numerical simulations on a simple system in
dimension d = 1 and with a finite number of Fourier modes.
All the parameters are kept constant except ζ , which is used to
investigate active and passive diffusion, h, which allows us to
test the validity domain of the weak-coupling approximation
used for the predictions, and κφ , which allows us to vary the
field evolution rate and thus interpolate between the quenched
field and adiabatic limits.

The fixed parameters and operators are set to T = 1, κx =
1, K̃(k) = R̃(k) = 1, and �̃(k) = k2 + 1. We use the method

introduced in Ref. [21] to simulate a Gaussian field with a finite
number of Fourier modes, albeit in dimension d = 1 here. The
field reads

φ(y,t) = a0(t) +
N∑

k=1

[ak(t) cos(ky) + bk(t) sin(ky)] . (67)

To determine the evolution of the coefficients ak(t) and bk(t),
we insert this decomposition in the evolution equation (8), then
multiply it by cos(ky) or sin(ky), and integrate over [0,2π ].

FIG. 2. (Color online) Predicted effective diffusion coefficient as
a function of the feedback parameter ζ and the field evolution rate
κφ , for the parameters used in the numerical simulations. The gray
plane indicates the value 0 and the white line is the corresponding
contour. This graph shows that the diffusion coefficient is increased
for a passive particle in a fast field, and decreased otherwise.
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We get

ȧ0(t) = −κφ

[
�̃(0)a0(t) + ζh

2π
φ(x(t),t)

]
+ √

κφξ0(t), (68)

ȧk(t) = −κφ

[
�̃(k)ak(t) + ζh

π
φ(x(t),t) cos[kx(t)]

]
+√

κφξk(t), (69)

ḃk(t) = −κφ

[
�̃(k)bk(t) + ζh

π
φ(x(t),t) sin[kx(t)]

]
+√

κφξ ′
k(t), (70)

where the noises have the following correlators:

〈ξk(t)ξk′(t ′)〉 = 2T

π
δ(t − t ′)δk−k′ if k �= 0, (71)

〈ξ0(t)ξ0(t ′)〉 = T

π
δ(t − t ′), (72)

〈ξ ′
k(t)ξ ′

k′(t ′)〉 = 2T

π
δ(t − t ′)δk−k′, (73)

〈ξk(t)ξ ′
k′(t ′)〉 = 0. (74)

In the simulations, we let the system evolve for a long time
τ 
 κ−1

x ,κ−1
φ , and we measure the particle position at regular

intervals. We repeat this simulation a large number of times
(around 105) and, using these measurements, we compute
〈x(t)2〉, where t is the measurement time. We then plot this
function of t and a linear fit gives the value of the effective
diffusion constant.

For a finite number of modes, the integral is replaced by a
sum in the effective diffusion coefficient, and the simulations
are compared to the following formula:

Deff = 1 − h2

8π2

N∑
k,k′=−N

(k + k′)2([2ζ − 1]κφ[�̃(k) + �̃(k′)] + [k + k′]2)

�̃(k)�̃(k′)(κφ[�̃(k) + �̃(k′)] + [k + k′]2)2
. (75)

The validity domain is examined in Fig. 3 for the active
case and in Fig. 4 for the passive case. For an active
particle, it appears that the validity domain is very small: the
small coupling approximation holds for h � 0.7, where the
correction is only 1% of the bare diffusion coefficient.
The situation is different for a passive particle, especially
in a fast field (κφ = 2), where the approximation holds for
h � 2, where the correction is close to 5%. The validity
domain is smaller for a slow field (κφ = 0.5). We can conclude
that our prediction is better when the diffusion coefficient is
increased than when it is decreased; in the last case, it rapidly
underestimates the diffusion coefficient.

The effect of the field evolution rate is studied in Fig. 5
for a small coupling and in Fig. 6 for a high coupling. In
the first case, the computed diffusion coefficient is close to
the one obtained in the simulations. We notice important

FIG. 3. (Color online) Effective diffusion coefficient of an active
particle as a function of the coupling parameter; simulations (circles)
and analytical result (continuous line).

variations in the simulation results; they are due to the fact that
the correction to the bare diffusion coefficient is very small
and thus needs a lot of computation time to be determined
precisely. At high coupling, the agreement between theory
and simulations is not good for an active particle, but the
general tendency is correct. On the other hand, the passive
calculation appears to be very accurate and fully reproduces
the simulations results. Notably, the crossover between a
decrease and an augmentation of the diffusion coefficient
when the field becomes faster is well captured by the analytic
calculation.

In conclusion, our predictions are precise in a relatively
small domain of validity, but they remain qualitatively good
at higher coupling and thus provide a useful understanding of
the phenomenon studied here.

FIG. 4. (Color online) Effective diffusion coefficient of a passive
particle as a function of the coupling parameter, for two different field
evolution rates; simulations (circles and squares) and analytical result
(lines).
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FIG. 5. (Color online) Effective diffusion coefficient as a function
of the field evolution rate for a passive and an active particle, with
a coupling h = 0.5; simulations (circles and squares) and analytical
result (lines).

V. DISCUSSION ON ANOMALOUS DIFFUSION

The study presented here focuses on the computation of
small corrections of the effective diffusion constant in the case
in which the diffusion remains normal. However, as explained
in Refs. [17,28], an infrared (small k) divergence in the integral
invoked in the expression of the diffusion constant indicates
a fertile ground for anomalous diffusion. We now discuss the
infrared divergence of the integral appearing in Eq. (66) in a
way similar to the one used in Refs. [17]: we start by defining
the small-k behavior of the operators,

�̃(k) ∼
k→0

kδ, (76)

K̃(k) ∼
k→0

kκ, (77)

R̃(k) ∼
k→0

kρ. (78)

FIG. 6. (Color online) Effective diffusion coefficient as a function
of the field evolution rate for a passive and an active particle, with
a coupling h = 2; simulations (circles and squares) and analytical
result (lines).

The integral in Eq. (66) diverges at low k if

deg0 = 4κ − 2δ − min(ρ + δ,2) + 2d + 2 � 0, (79)

where deg0 is the degree of the integral, i.e. its dimension in k.
In the two examples presented in Sec. II, the operator � is of
the form �̃(k) = kδ(k2 + m2). When the field is critical, m = 0
and δ′ = δ + 2 should be used instead of δ in the previous
formula. We now apply this formula to our examples.

The following table gives, for the cases of a protein coupled
to membrane curvature or composition, the value of the
exponents and the degree deg0 of the integral (66):

Curvature Composition

Parameters δ = 2, κ = 2, ρ = −1 δ = 0, κ = 0, ρ = 2
Noncritical deg0 = 9 deg0 = 4
Critical deg0 = 4 deg0 = 0

It appears that a coupling to membrane composition at
the miscibility transition can lead to anomalous diffusion.
Since the proteins are active (ζ = 1), the correction to the
diffusion constant is negative and the anomalous diffusion
should be subdiffusive. We recall that this statement should
be taken carefully: we only say that this system is likely to
be subdiffusive, we do not assert that it is. For instance, this
divergence could also stand for a correction proportional to hα ,
with α < 2. The degree 0 of the integral implies a logarithmic
divergence, i.e., a correction of the form log(l) when the system
is close to criticality. In this configuration, the temperature
dependence of the diffusion coefficient is dominated by the
temperature dependence of the correlation length (19).

We now briefly discuss the case of ultraviolet (large-k)
divergence. An ultraviolet divergence should be regularized
with a microscopic cutoff length, for instance the protein
size; in this case, the diffusion coefficient thus depends on
the protein radius, an effect that was explored experimentally
in Ref. [6] and discussed in Refs. [14,18]. The divergence
criterion here is

deg∞ = 4κ − 2δ − max(ρ + δ,2) + 2d + 2 � 0, (80)

where the exponents are defined in the limit k → ∞; this
analysis does not depend on the correlation length. We find
that deg∞ = 3 for a coupling to the curvature and deg∞ = −2
for a coupling to the composition. In the first case, regularizing
the divergence with the protein radius a gives a correction
proportional to a3.

VI. CONCLUSION

We analyzed the diffusion of a particle quadratically
coupled to a fluctuating field that avoids regions where the
field fluctuates and may reduce the field fluctuations, in which
case it is called active; if it does not affect the field, it is called
passive. This study completes the one developed in Ref. [17]
for a linear coupling between the field and the particle, and
they establish together a general model for diffusion in a
fluctuating environment. The environment is modeled by a
Gaussian field obeying overdamped Langevin dynamics. The
particle-field interaction can take two forms: if the particle
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breaks the symmetry of the field and prefers one specific
sign, it is modeled by a linear interaction; if it does not break
the symmetry of the field and avoids field fluctuations, it is
represented by a quadratic interaction. Both types are present
in the general case, an example being the protein coupled to
membrane curvature discussed in Sec. II B. In the limit of a
weak interaction, both interaction types contribute to the full
correction to the effective diffusion coefficient; alternatively, a
preliminary study may determine the dominant contribution.

We focused on the computation of the effective diffusion
coefficient, assuming normal diffusion; our method allows us
to deal with equilibrium as well as out-of-equilibrium systems
(that is the case if the environment is not affected by the particle
or subject to nonthermal forces [3,29]). Our conclusion is that
for both types of coupling, the diffusion coefficient is always
reduced for an active particle, whereas it can be reduced or
increased for a passive particle if the field is slow or fast,
respectively; this is summarized in Fig. 2.

When the correction to the bare diffusion coefficient
diverges, it may be interpreted as the onset of anomalous
diffusion; depending on the sign of the correction, it indicates
subdiffusion or superdiffusion. For instance, for membrane
proteins, we have shown that subdiffusion may occur when
the protein is coupled to the membrane composition at
the critical point. This output of our theory is of major
importance regarding the numerous examples of anomalous
diffusion found in experiments [2,3]; however, it gives little
information on the diffusion and notably on the exponent. This
limitation comes from the fact that we use a perturbative
expansion around normal diffusion and compute the prefactor,
i.e., the diffusion coefficient. Further work is thus needed to be
able to deal with environment-induced anomalous diffusion;
a necessary step in this direction is to go beyond perturbative
results.
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APPENDIX A: FUNCTIONAL OPERATORS IN REAL AND
FOURIER SPACE

In this Appendix, we define our notations and recall some
basic properties of functional operators. We start in real space
and then see how it transposes to Fourier space, which is used
a lot in this article. All the operators considered here are real.

For two functions f ( y) and g( y) and two operators A( y, y′)
and B( y, y′), the scalar product of f and g, the action of A on
f , the product of A and B, and the trace of the operator A are,
respectively, defined by

f · g =
∫

f ( y)g( y)d y, (A1)

(Af )( y) =
∫

A( y, y′)f ( y′)d y′, (A2)

(AB)( y, y′) =
∫

A( y, y′′)B( y′′, y′)d y′′, (A3)

tr(A) =
∫

A( y, y)d y. (A4)

The adjoint A† of the operator A is defined by the equality
f (Ag) = (A†f )g, which holds for all functions f and g; it is
straightforward to show that

A†( y, y′) = A( y′, y). (A5)

A is symmetric or self-adjoint if A† = A, or

A( y, y′) = A( y′, y). (A6)

An operator A is invariant by translation if there exists a
function a such that

A( y, y′) = a( y − y′). (A7)

Such an operator is isotropic if it only depends on the distance
between y and y′:

A( y, y′) = a(| y − y′|). (A8)

We now switch to the Fourier space, with the Fourier
transform defined by

f ( y) =
∫

eik· yf̃ (k)
dk

(2π )d
, (A9)

A( y, y′) =
∫

ei(k· y+k′· y′)Ã(k,k′)
dk dk′

(2π )2d
, (A10)

for a function and an operator, respectively. This definition
allows us to translate Eqs. (A1)–(A4) into Fourier space:

f · g =
∫

f̃ (−k)g(k)
dk

(2π )d
, (A11)

Ãf (k) =
∫

Ã(k,−k′)f̃ (k′)
dk′

(2π )d
, (A12)

ÃB(k,k′) =
∫

Ã(k,−k′′)B(k′′,k′)
dk′′

(2π )d
, (A13)

tr(A) =
∫

Ã(k,−k)
dk

(2π )d
. (A14)

The adjoint of the operator A is defined in the same way as in
real space:

Ã†(k,k′) = Ã(k′,k). (A15)

The Fourier transform of the translation-invariant operator
A( y, y′) = a( y − y′) reads

Ã(k,k′) = (2π )d ã(k)δ(k + k′). (A16)

Moreover, if A is isotropic, its Fourier transform only depends
on the norm |k|: ã(k) = ã(|k|).

In this article, we do not use a different notation for the
one-variable function associated with a translation-invariant
operator: the number of variables indicates whether we refer
to the operator or to its associated function. For instance, we
will use �̃(k,k′) = (2π )d�̃(k)δ(k + k′).

APPENDIX B: FIELD CORRELATION FUNCTIONS

In this Appendix, we derive the free field correlation
functions 〈ψψ〉, 〈φψ〉, and 〈φφ〉 from the free field action
(22). Equations on averages can be obtained from the action
with the Schwinger-Dyson formula [30]:〈

δA[φ,ψ]

δφ( y,t)

〉
=

〈
A[φ,ψ]

δS
φ

0 [φ,ψ]

δφ( y,t)

〉
, (B1)
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where A is a functional operator. The same equation holds if
the derivative is taken with respect to ψ( y,t). Using A = 1,
we derive two equations that give the averages

〈φ( y,t)〉 = 0, (B2)

〈ψ( y,t)〉 = 0. (B3)

With A[φ,ψ] = ψ( y,t) and derivating with respect to
φ( y′,t ′), we get

0 = 〈ψ( y,t)[ψ̇( y′,t ′) − κψ (R�ψ)( y′,t ′)]〉, (B4)

which leads to

Cψψ ( y, y′,t,t ′) = 〈ψ( y,t)ψ( y′,t ′)〉 = 0. (B5)

Setting A[φ,ψ] = φ( y,t) and derivating with respect to
φ( y′,t ′) gives

δ( y − y′)δ(t − t ′) = i〈φ( y,t)[ψ̇( y′,t ′) − κφ(R�ψ)( y′,t ′)]〉.
(B6)

This equation has the solution

Cφψ ( y, y′,t,t ′) = 〈φ( y,t)ψ( y′,t ′)〉 (B7)

= i[e−κφ (t−t ′)R�]( y − y′)θ (t − t ′). (B8)

Finally, keeping the same operator A and derivating with
respect to ψ( y′,t ′), we get

i〈φ( y,t)[φ̇( y′,t ′) + κφ(R�φ)( y′,t ′)]〉
= 2T κφ〈φ( y,t)(Rψ)( y′,t ′)〉. (B9)

Using the previous result (B8), we solve this equation
with

Cφφ( y, y′,t,t ′) = 〈φ( y,t)φ( y′,t ′)〉 (B10)

= T [�−1e−κφ |t−t ′ |R�]( y − y′). (B11)
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[18] V. Démery and D. S. Dean, Phys. Rev. E 84, 010103 (2011).
[19] M. Goulian, R. Bruinsma, and P. Pincus, Europhys. Lett. 22, 145

(1993).
[20] A.-F. Bitbol, P. G. Dommersnes, and J.-B. Fournier, Phys. Rev.

E 81, 050903 (2010).
[21] L. C.-L. Lin and F. L. H. Brown, Phys. Rev. Lett. 93, 256001

(2004).
[22] B. Reynwar and M. Deserno, Biointerphases 3, FA117 (2008).
[23] A. R. Honerkamp-Smith, S. L. Veatch, and S. L. Keller, Biochim.

Biophys. Acta: Biomembranes 1788, 53 (2009).
[24] B. B. Machta, S. L. Veatch, and J. P. Sethna, Phys. Rev. Lett.

109, 138101 (2012).
[25] A.-F. Bitbol and J.-B. Fournier, Phys. Rev. E 83, 061107 (2011).
[26] B. A. Camley and F. L. H. Brown, Phys. Rev. E 85, 061921

(2012).
[27] C. Aron, G. Biroli, and L. F. Cugliandolo, J. Statist. Mech.:

Theory Exp. (2010) P11018.
[28] J.-P. Bouchaud and A. Georges, Phys. Rep. 195, 127 (1990).
[29] P. Sens and M. S. Turner, Phys. Rev. Lett. 106, 238101 (2011).
[30] F. J. Dyson, Phys. Rev. 75, 486 (1949).

052105-10

http://dx.doi.org/10.1073/pnas.0903554106
http://dx.doi.org/10.1073/pnas.0903554106
http://dx.doi.org/10.1073/pnas.1221962110
http://dx.doi.org/10.1038/nphoton.2012.278
http://dx.doi.org/10.1038/nphoton.2012.278
http://dx.doi.org/10.1073/pnas.72.8.3111
http://dx.doi.org/10.1073/pnas.72.8.3111
http://dx.doi.org/10.1002/andp.19053220806
http://dx.doi.org/10.1073/pnas.0511026103
http://dx.doi.org/10.1073/pnas.0511026103
http://dx.doi.org/10.1209/epl/i2005-10139-6
http://dx.doi.org/10.1103/PhysRevE.75.011908
http://dx.doi.org/10.1103/PhysRevE.75.011908
http://dx.doi.org/10.1063/1.2739526
http://dx.doi.org/10.1021/la702319q
http://dx.doi.org/10.1103/PhysRevLett.102.138102
http://dx.doi.org/10.1103/PhysRevLett.102.138102
http://dx.doi.org/10.1103/PhysRevE.81.031903
http://dx.doi.org/10.1103/PhysRevE.81.031903
http://dx.doi.org/10.1529/biophysj.107.119222
http://dx.doi.org/10.1529/biophysj.107.119222
http://dx.doi.org/10.1103/PhysRevLett.104.080601
http://dx.doi.org/10.1140/epje/i2010-10640-1
http://dx.doi.org/10.1088/0953-8984/23/23/234114
http://dx.doi.org/10.1088/0953-8984/23/23/234114
http://dx.doi.org/10.1103/PhysRevE.84.011148
http://dx.doi.org/10.1103/PhysRevE.84.010103
http://dx.doi.org/10.1209/0295-5075/22/2/012
http://dx.doi.org/10.1209/0295-5075/22/2/012
http://dx.doi.org/10.1103/PhysRevE.81.050903
http://dx.doi.org/10.1103/PhysRevE.81.050903
http://dx.doi.org/10.1103/PhysRevLett.93.256001
http://dx.doi.org/10.1103/PhysRevLett.93.256001
http://dx.doi.org/10.1116/1.2977492
http://dx.doi.org/10.1016/j.bbamem.2008.09.010
http://dx.doi.org/10.1016/j.bbamem.2008.09.010
http://dx.doi.org/10.1103/PhysRevLett.109.138101
http://dx.doi.org/10.1103/PhysRevLett.109.138101
http://dx.doi.org/10.1103/PhysRevE.83.061107
http://dx.doi.org/10.1103/PhysRevE.85.061921
http://dx.doi.org/10.1103/PhysRevE.85.061921
http://dx.doi.org/10.1088/1742-5468/2010/11/P11018
http://dx.doi.org/10.1088/1742-5468/2010/11/P11018
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1103/PhysRevLett.106.238101
http://dx.doi.org/10.1103/PhysRev.75.486



