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Abstract. Stochastic density functional theory is applied to analyze the 
conductivity of strong two species electrolytes at arbitrary field strengths. The 
corresponding stochastic equations for the density of the electrolyte species are 
solved by linearizing them about the mean density of ionic species, yielding 
an eective Gaussian theory. The non-equilibrium density–density correlation 
functions are computed and the conductivity of the electrolyte is deduced. 
In the bulk, our results give a simple derivation of the results of Onsager 
and coworkers who used very dierent methods. The method developed here 
can also be used to study electrolytes confined in one and two dimensions 
and interacting via either the three dimensional Coulomb interaction or the 
Coulomb interaction corresponding to that dimension of space.
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1. Introduction

Onsager’s study of the conductivity of strong electrolytes is famous as one of his first 
major scientific contributions. In this work he showed how the theory developed by 
Debye and Hückel [1] should be modified to take into account the eect of Brownian 
motion on the ions [2]. For an electroneutral system with two ionic species { }α∈ + −,  
with ionic charges αqz  ( αz  denoting the signed valency), mobilities κα and average densi-
ties ρ̄α, the naive formula for the conductivity, which neglects the interaction between 
the ions, is

¯∑σ κ ρ=
α
α α αq z .0

2 2

 (1)

Debye and Hückel [1] computed a correction to this bare conductivity due to the 
flow induced on the solvent by the charge distribution about an ion. Onsager later 
pointed out how this result is changed (essentially additively at the level of approx-
imation employed) by the Brownian motion of the ions and their mutual interaction 
[2]. Indeed it is clear that even in the absence of the solvent the conductivity will be 
modified by correlations between the ions: an ion moves in an electric field which is the 
sum of the uniform applied field and the field generated by the other ions in the system. 
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Onsager then went on to study the conductivity of strong and weak electrolytes in the 
presence of a finite applied field [3]. For strong electrolytes the modification due to the 
finite electric field is that the Debye screening of charges is killed o by the field and 
thus the conductivity increases—the so-called Wien eect [4]. For weak electrolytes, 
which consists of free anions and cations along with bound Bjerrum pairs, the exter-
nal field has the eect of shifting the chemical equilibrium between ions and Bjerrum 
pairs (by pulling the pairs apart) [5]. This shift increases the density of charge carriers, 
leading to an increase in conductivity. The validity of Onsager’s calculation for weak 
electrolytes was verified recently, for a solvent free system, by numerical simulations 
of the second Wien eect [6]. Interestingly, Onsager returned regularly to this prob-
lem throughout his career, he compared it carefully with experimental results and also 
developed new mathematics to facilitate the study of these systems [3].

In this paper we revisit the problem of the conductivity of strong electrolytes for 
Brownian systems (we do not consider the eect of a solvent here) by analysing the 
stochastic density functional theory (SDFT) for the density field of the interacting 
particles. The SDFT in question was first written down by Kawasaki [7] on phenom-
enological grounds but was later shown formally to be the equation of evolution for 
the density field of interacting Brownian particles [8]. The SDFT is analytically intrac-
table when the particles interact, and very dicult to analyse even when there are no 
interactions [9], however it can be used as the starting point for various approximate 
theories, for example mode coupling theory [10]. Recently it was shown that the lin-
earised SDFT for charged particle systems yields a dynamical theory which has the 
Debye–Hückel theory as its static limit [11]. This has allowed the study of the dynam-
ics of the thermal Casimir eect between adjacent plates containing Brownian charges. 
The same type of linearization approximation can also be used to compute the eective 
diusion constant of a Brownian tracer particle in interaction with a bath of identi-
cal particles [12]. Remarkably, the result obtained from this computation is identical 
to that obtained by an arduous one-loop renormalisation group analysis of the full N 
particle Fokker–Planck equation [13]. Finally we remark that the SDFT has even been 
used to derive integration results in random matrix theory [14].

Here we will show how Onsager’s results for electrolyte conductivity can be derived 
in a relatively straightforward fashion. As well as considering the case of a globally 
electroneutral electrolyte with two species of oppositely charged ions, we also deal with 
mobile ions that are not as an ensemble electroneutral. In this case, the mobile ion’s 
total charge is neutralized by a uniform immobile background charge—a so-called jel-
lium model. We also generalize these results for the conductivity to lower dimensions 
d with the corresponding d-dimensional Coulomb interaction. Finally, our results can 
be extended to systems with reduced dimension, for example ions confined to a two 
dimensional surface.

2. Model

We will consider a system containing two species of Brownian particles which interact 
via pairwise interactions and which are acted on by a uniform external field. The basic 

http://dx.doi.org/10.1088/1742-5468/2016/02/023106
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formalism developed here can be applied to systems with an arbitrary number of spe-
cies, however the reader will see below that on increasing the number of species the 
calculations become rather cumbersome. We will ultimately apply this model to the 
case of electrostatic interactions between charged particles in the presence of an applied 
field. The formalism developed however allows the possibility of including additional 
interactions between the ions. Let each species be denoted by an index α taking the 
label  +  or  −  depending if the ion is a cation or anion respectively. We denote by ( )ρα x t,  
the local density operator of the species α and κα its mobility. We denote by αβV  the 
pairwise interaction between species α and β. We will ultimately decompose the pair-
wise interaction αβV  into an electrostatic and non-electrostatic contribution as

( ) ( ) ( )= +αβ α β αβx x xV q z z G U .2
0 (2)

Here ( )xG0  denotes the Green’s function for the electrostatic interaction in the system, 
q is the basic unit of charge and αz  denotes the valency of the ions of type α. The inter-
action ( )αβ xU  denotes interactions other than the direct electrostatic interaction that 
may be present in the system, for example hard and soft core interactions. Note that in 
the case where there is a neutralizing uniform background charge (jellium model) there 
is no contribution to the electric field due to this uniform charge.

At temperature T, the density fields obey the SDFT [8]:

ρ∂ = −∇ ⋅α αj ,t (3)

( ) ηκ ρ κ ρ κ ρ= − ∇ + +α α α α α α α α αj fT ,1/2
 (4)

where ( )ηα x t,  is a Gaussian white noise with correlation function

( ) ( ) ( ) ( )η η δ δ δ= − −′ ′ ′ ′α β αβx x x xt t T t t, , 2 .T
 (5)

In the above we have introduced the force ( )αf x t,  generated by the applied external 
field E and the interactions between the ions:

∑ ρ= − ∇ ∗α α
β

αβ βf Ez q V ,
 (6)

where ∗ denotes the convolution over spatial variables.
The average electrical current is given by ⟨ ⟩ ⟨ ⟩= ∑α α αJ jq z  and from this the con-

ductivity σ is defined via ⟨ ⟩ σ=J E. Inserting equations (4) and (6) in the definition of 
the current gives

⟨ ⟩ ¯
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑κ ρ κ ρ ρ= − ∇ ∗

α
α α α

α β
α α α αβ βJ Eq z q z V .2 2

,
 (7)

To rewrite the second term, we introduce the density fluctuations and their stationnary 
equal time correlation as

( ) ( ) ¯ρ ρ= −α α αx xn t t, , , (8)

( ) ⟨ ( ) ( )⟩=αβ α βx xC n t n t, 0, . (9)

The average electric current is thus

http://dx.doi.org/10.1088/1742-5468/2016/02/023106
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⟨ ⟩ ( ) ( )∫∑σ κ= − ∇
α β

α α αβ αβJ E x x xq z C V d .0

,
 (10)

Neglecting the correlations between the ions, only the electric field contribution in the 
second term of equation (4) does not average to zero and the conductivity is given by 
equation (1). In order to compute the correction to the bare conductivity σ0, we need 
to evaluate the correlations of the density fluctuations.

3. General computation using the linearized Stochastic Density Functional Theory

We have to use the SDFT (equations (3)–(6)) to compute the stationnary correlation 
function ( )αβ xC . Unfortunately these equations are not linear and contain multiplica-
tive noise, thus the correlation function cannot be calculated in general. This diculty 
is circumvented by assuming small density variations, ( ) ρ̄α α�xn t, , which allows one 
to linearize the SDFT [11, 12]. The dynamics of ( )α xn t,  become, to the lowest order

¯ ( ¯ )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑ ηκ κ κ ρ κ ρ∂ = ∇ − ⋅ ∇ + ∇ ∗ + ∇ ⋅α α α α α α α α

β
αβ β α α αEn T n z q n V n .t

2 2 1/2

 

(11)

The dynamics takes a simpler form in Fourier space, where ˜ ( ) ( )∫=α α
− ⋅k x xn t n, e dk xi :

˜ ( ) ( ) ˜ ( ) ¯ ˜ ( ) ˜ ( ) ˜ ( )∑κ κ ρ ξ∂ = − + ⋅ − +α α α α α α
β

αβ β αk E k k k k kn Tk z q n k V n ti , ,t
2 2

 (12)

where the Gaussian noise ˜ ( )ξα k t,  has a correlation function

ξ ξ π κ ρ δ δ δ= − +′ ′ ′ ′α β α α αβk k k kt t T k t t, , 2 2 .d 2˜ ( ) ˜ ( ) ( ) ¯ ( ) ( ) (13)

We can now rewrite the dynamics in terms of the two component vector

( )
( )
( )

⎛
⎝
⎜

⎞
⎠
⎟= +

−
x

x

x
N t

n t

n t
,

,

,
, (14)

using the matrices

˜( )
¯

¯
⎛
⎝
⎜

⎞
⎠
⎟

ρ κ
ρ κ

= + +

− −
kR k

0

0
,2

 (15)

˜( )
¯

˜ ( ) ˜ ( )

˜ ( )
¯

˜ ( )

⎜ ⎟

⎜ ⎟

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎟
⎟
⎟
⎟⎟

ρ

ρ

=

+
⋅

+

+
⋅

+

+

+ ++ +−

+−

−

− −−

k

E k

E k
A T

z q

Tk

V k

T

V k

T

V k

T

z q

Tk

V k

T

1
1 i

1
1 i

.
2

2

 

(16)

The evolution equation (12) now reads

˜ ˜ ˜ ˜ ˜∂ = − + ΞN RAN ,t (17)

http://dx.doi.org/10.1088/1742-5468/2016/02/023106
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where the correlation function of the Gaussian noise ˜ ( )Ξ k t,  is given by

π δ δΞ Ξ = + −′ ′ ′ ′k k k k kt t TR t t, , 2 2 .dT˜ ( ) ˜ ( ) ( ) ˜( ) ( ) ( ) (18)

The density fluctuation correlation matrix ( )αβ xC  reads

( ) ( ) ( )=x xC N N 0 ,T
 (19)

and in Fourier space, the correlation is given by

∫= −′ ′ ′− ⋅ − ⋅′ ′k k x x x xN N Ce d dk x k xT i i˜ ( ) ˜ ( ) ( ) (20)

∫= − + ⋅ + ⋅′ ′ u x uCe d dk k x k uii ( )( )
 (21)

π δ= + ′k k kC2 .d( ) ( ) ˜ ( ) (22)

In the stationnary regime, C̃ satisfies [15]
˜ ˜ ˜ ˜ ˜ ˜ ˜+ =∗

RAC CA R TR2 . (23)

where we have used that ˜( ) ˜( )− =k kR RT  and ˜( ) ˜( )− = ∗k kA AT . Without an electric field, 
the system would be in thermal equilibrium and Ã would be self-adjoint; in this case 

one finds ˜ ˜= −
C TA

1
, and one recovers the standard Debye–Hückel approximation for 

the density fluctuation correlation function. In the presence of an electric field, we have 
to solve the system of equations (23). The number of equations to solve is M(M  +  1)/2, 
where M is the number of species; in our case of two species we have only three linear 
equations to solve.

Writing ρ κ =± ± ±r  and ( )˜ =A T a b
b c

, solving for the components of the correlation 

function leads to

˜
( )( )∣ ∣ [ ( ) ( )]

( )∣ ∣ ( )[ ( ) ( )]
( )[ ( ) ( )] ( )∣ ∣

=
+ + + − + + +

×
+ + − + + + +

− + + + + + +

∗ ∗
+ −

∗
+

∗
−

∗

∗
+ −

∗
+

∗
− +

∗
−

∗

+ −
∗

+
∗

−
∗ ∗

+ −
∗

⎛

⎝
⎜

⎞

⎠
⎟

C
a a c c r a r c b r a a r c c

c c r a r c b r a r c r a a r c c

b r a r c r a a r c c a a r a r c

2

.

2 2 2

2

2

 

(24)
Notice that the correlation function’s o diagonal components satisfy ˜ ( ) ˜ ( )=+− −+

∗
k kC C , or 

equivalently ˜ ( ) ˜ ( )= −+− −+k kC C , which in real space corresponds to ( )   ( )= −+− −+x xC C , 
which is a symmetry condition pointed out by Onsager. This is because the symmetry 

→ −x x is broken by the electric field (in the direction of the field), however reversing 
the direction of the field but at the same time swapping the charges generates a physi-
cally identical situation.

The average electrical current, which is given by equation (10), reads

⟨ ⟩ ˜ ( ) ˜ ( )
( )∫∑σ κ
π

= + −
α β

α α αβ αβJ E k k k
k

q z V Ci
d

2
.

d0

,
 (25)
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Recall here that the correction to the bare current is given by the average of the inter-
action term which was neglected upon linearizing the full SDFT, thus our expansion is 
only valid when the computed correction is small. From the expression for the current 
we can define the field dependent conductivity via

⟨ ⟩ ( ) [ ( )]σ σ σ= = + ∆J E EE E ,0 (26)
where we assumed that the system is isotropic. We find that the correction to the bare 
conductivity is given by

( )
( )

( )
( )

( )
¯ ¯ ( )

( )

˜

( )

¯ ˜ ¯ ˜

( )

¯ ˜ ¯ ˜ ¯ ˜ ¯ ˜

( )
( )

( )

¯ ¯ ˜ ¯ ˜ ¯ ˜

( )

∥

∥
∫

σ
ρ ρ κ κ
κ κ

π

∆ = −
−

+

×
+

+ + + +

− +

κ ρ κ ρ
κ κ

ρ ρ κ ρ κ ρ
κ κ

κ κ
κ κ

ρ ρ κ ρ κ ρ
κ κ

+ − + + − −

+ −

+−
+

+

+

+
−
+

+

+

+ + ++ − − −−

+ −

+ ++ − −− + + ++ − − −−

+ −

+ + − −

+ −

+ − +− + + ++ − − −−

+ −

⎛
⎝
⎜⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎞
⎠
⎟

k

E
q z z

T

V 1

1 1 1

1

d

2
,

k

k

V V

T

V

T

V

T

V V

T

z z qEk

Tk

V

T

V V

T

d

2 2

2

2

2 2

2

2

2

2

2

2

 (27)
where ∥k  denotes the component of the vector k in the direction of E (the third line of 
the equation belongs to the denominator of the integrand).

We notice from equation (27) that the correction ( )σ∆ E  is zero when κ κ=+ + − −z z . 
In this case, the two ionic types move with the same average velocity κ= ± ±v Eq z  due 
to an applied uniform field and the density fluctuation correlation keeps its equilibrium 
form, which is isotropic and does not modify the average electric field felt by an ion.

At zero field, the correction to the conductivity is given by

( )
¯ ¯ ( )

( )
˜ ( )

( )¯ ˜ ( ) ¯ ˜ ( ) ¯ ¯ ( ˜ ( ) ˜ ( ) ˜ ( ) ) ¯ ˜ ( ) ¯ ˜ ( )
( )

∫

σ
ρ ρ κ κ
κ κ

π

∆ = −
−

+

×
+ + +
ρ ρ ρ ρ κ ρ κ ρ

κ κ

+ − + + − −

+ −

+−

+ − +

+
+ ++ − −− + − ++ −− +− + + ++ − − −−

+ −

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

k

q z z

d T

V k

0

1 1

d

2
.

V k V k

T

V k V k V k

T

V k V k

T

d

2 2

2

2

2

2

 (28)

4. Zero field conductivity for purely electrostatic interactions

4.1. General results for a purely electrostatic interaction

If the interaction is purely electrostatic, i.e. only the first term is present in equa-
tion (2), our result at zero field equation (28) reduces to

( )( )
( )

¯ ¯ ( )
( )

˜ ( )
( )( ¯ ¯ ) ˜ ( ) ˜ ( )

( )

∫σ
ρ ρ κ κ

κ κ π
∆ = −

−

+ + +ρ ρ σ
κ κ

+ − + − + + − −

+ − +

+
+ + − −

+ −

k kq z z z z

d T

G
0

1 1

d

2
.

k kq z z G

T

G

T

d

6 2 2 2

2

0
2

2 2 2
0 0 0

 (29)
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At this point we should note that theories with a k dependent (non-local in space) 
dielectric function [16] can also be treated within this formalism. We now define, fol-
lowing the notation of Onsager [2],

ρ̄
=±

± ±

ε
m

z q

T
2

2 2

 (30)

= ++ −m m m2 2 2
 (31)

′
κ κ
κ κ

σ
κ κ

=
+
+

=
+

+ + − −

+ − + −
m

m m

T
.2

2 2
0

ε ( ) (32)

Using this, we can write

∫′ ′
σ
σ

κ κ
κ κ π

∆
= −

−
+ + +

+ − + + − −

+ −
− −k k

kq

d T

m m z z

m G m G m

0 1 d

2
.

d
0

2 2 2 2

2 2
0

1 2
0

1 2ε ε ε

( ) ( )
( ) ([ ˜ ( )] )([ ˜ ( )] ) ( )

 (33)
In the case where all the charges are mobile in an electroneutral system, ρ̄∑ =α α αz 0 

and thus

′
′

κ κ
κ κ

−
+

= −+ − + + − −

+ −
+ −

m m z z

m
z z m ,

2 2 2

2 2
2

( )
( ) (34)

leading to a simpler form for the correction:

∫
′

′
σ
σ π

∆
=

+ +
+ −

− −k k

kq z z m

d T G m G m

0 1 d

2
.

d
0

2 2

0
1 2

0
1 2ε ε ε

( )
([ ˜ ( )] )([ ˜ ( )] ) ( ) (35)

4.2. Conductivity for ions moving in homogeneous space

In a homogeneous d-dimensional space with solvent dielectric permittivity ε, the elec-

trostatic Green function is given by ˜ ( ) ( )= −εkG k0
2 1 and the conductivity correction 

(equation (33)) becomes

ε
( ) ( )

( ) ( )( ) ( )∫′ ′
σ
σ

κ κ
κ κ π

∆
= −

−
+ + +

+ − + + − −

+ −

kq

d T

m m z z

m k m k m

0 1 d

2
.

d
0

2 2 2 2

2 2 2 2 2 2 (36)

We note that while m is the usual inverse Debye screening length, which only depends 
on static quantities, the inverse length scale ′m  depends generally explicitly on the 
dynamical properties of the system via the mobilities κα. However, for a monova-

lent electrolyte ( = ±±z 1), =′m m/ 2 and is thus independent of the ionic mobilities. 
Furthermore, we note that the correction to the bare conductivity is always negative. 
Explicit evaluation for dimensions d  =  1 to 3 yields

ε
( ) ( )

( )′
σ
σ π

κ κ
κ κ

∆
= −

−
+ + ′=

+ − + + − −

+ −

⎛
⎝
⎜

⎞
⎠
⎟ q

T

m m z z

m m m

0

12

1
,

d0 3

2 2 2 2

2 2 (37)
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′ ′
σ
σ π

κ κ
κ κ

∆
= −

−
+ −=

+ − + + − −

+ −

′⎛
⎝
⎜

⎞
⎠
⎟ q

T

m m z z

m m m

0

4

log
,

d

m

m

0 2

2 2 2 2

2 2 2 2ε

( )( ) ( )
( )

 (38)

′
σ
σ

κ κ
κ κ

∆
= −

−
+ +′ ′=

+ − + + − −

+ −

⎛
⎝
⎜

⎞
⎠
⎟ q

T

m m z z

m mm m m

0

2

1
.

d0 1

2 2 2 2

2 2ε
( ) ( )

( ) ( ) (39)

For an electroneutral system where all charges are mobile, the correction is given by

ε
′σ

σ π
∆

=
+ ′=

+ −⎛
⎝
⎜

⎞
⎠
⎟ q z z

T

m

m m12
,

d0 3

2 2

 (40)

ε

( )
( )

σ
σ π

∆
=

−=

+ − ′

′

⎛
⎝
⎜

⎞
⎠
⎟ q z z

T4

log

1
,

d

m

m

m

m
0 2

2

2 (41)

σ
σ

∆
=

+
′

′=

+ −⎛
⎝
⎜

⎞
⎠
⎟ q z z

T

m

m m m2
.

d0 1

2

ε ( ) (42)

The result in dimension three agrees with that obtained by Onsager [2].
We now recall that the validity of the linearization of the SDFT can be checked 

a posteriori be verifying that the correction to the average current or conductivity is 
small. In all dimensions this condition is satisfied if the electrostatic coupling constant 

Γ =
π

+ −

ε
q z z

T2

2

 is small, but the dependence on the density depends on the dimension. For 

example, for monovalent ions:

 • For d  =  3, the correction is proportional to ρ̄  and is small if ρ̄ is small.

 •	 For d  =  2, the magnitude of the correction is purely controlled by the coupling 
constant Γ, which is dimensionless here, and does not depend on the density. In 
d  =  2 it is well known that there is a transition from a weak coupling conducting 
phase to a strong coupling dielectric phase (where the charge carriers exist only 
in bound pairs)—the Kosterlitz-Thouless transition [17]. The weak coupling 
approach applied here is clearly only valid in the conducting phase.

 •	 For d  =  1, the correction is proportional to ρ̄1/  and is thus small at high 
densities, however the long range nature of the electric field generated by one 
dimensional charges means that the one dimensional problem is not very realistic.

If, instead of the Coulomb interaction, the particles interact with a Yukawa or 
screened Coulomb interaction, with screening length ξ (i.e. the relevant Green’s func-

tion becomes ˜ ( ) [ ( )]ξ= + − −εkG k0
2 2 1), in our precedent calculations this simply amounts 

to replacing the inverse Debye length m by ξ+ −m2 2, and likewise for ′m , in the int-

egral over k in equation (36).
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4.3. Conductivity for ions confined to d  =  1 or 2 and interacting with the 3d Green 
 function

We now turn to the case of charges constrained to move in a low dimensional space 
(d  =  1 or 2) but that still interact with the 3-dimensional interaction ( ) ( ∣ ∣)π= εx xG 1/ 40 . 
In this case we find that the expressions for the conductivity corrections for systems 
confined in both two and one dimensions exhibit ultraviolet (large k) divergences. 
These divergences arise due to the singular nature of the three dimensional Coulomb 
interaction at short distances. The Coulomb interaction between the charges can be 
regularized by using a Gaussian distribution of charge about each ion type to give a 
local charge density

( )
( )

⎛

⎝
⎜

⎞

⎠
⎟ρ

π
= −α

α

α α� �
x

xqz

2
exp

2
,c d2

2

2

2 (43)

where α�  is the size of the region on the ion over which the net charge is localized. In 
Fourier space this gives an eective electrostatic interaction

˜ ( )
[ ]⎛

⎝
⎜⎜

⎞

⎠
⎟⎟= −

+
αβ

α β α β� �

ε
kV

q z z

k

k
exp

2
.

2

2

2 2 2

 (44)

4.3.1. Confinement to a plane. Now if we consider a 3 dimensional interaction between 
charges restricted to the plane z  =  0, the two dimensional Fourier transform of the 
eective electrostatic interaction in the (x, y) plane is given by

˜ ( ) ˜ ( )∫ π
=αβ αβ

=
k kV V k

k
,

d

2

d
z

z2
 (45)

where here k is a two dimensional vector. This then gives

˜ ( )

[ ] [ ]
⎜ ⎟
⎛
⎝

⎞
⎠

∫π
=

−

+αβ
α β= ∞

+ +α β� �

ε
kV

q z z

k u
u

exp

1
d .

d

k u

2
2

0

1

2

2

2 2 2 2

 (46)

In two dimensions on taking the limit →α� 0 for both ions we recover the standard 

result ˜ ( ) ( )=
=

εkG k1/ 2
d
0

2
; clearly this same behavior is recovered in the small k limit 

and the long distance properties of the Coulomb interaction are thus unaected by the 
short distance regularization. For large k,

˜ ( )
[ ]

→

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

π
∼

+
−

+
αβ

α β

α β

α β=

∞ � �

� �

ε
kV

q z z

k

k

2
exp

2
;

d

k

2
2

2 2 2

2 2 2

 (47)

subsequently all the formula for the conductivities derived in two dimensions are now 
rendered finite.

For simplicity if we take = =+ −� � � and define = �s 2 , the interaction potential 
can be written in the scaling form

http://dx.doi.org/10.1088/1742-5468/2016/02/023106


The conductivity of strong electrolytes from stochastic density functional theory

11doi:10.1088/1742-5468/2016/02/023106

J. S
tat. M

ech. (2016) 023106

˜ ( ) ( )=αβ
α β=

ε
kV

q z z
sf ks .

d 2
2

 (48)

The resulting integrals for the conductivity correction cannot be carried out analytically 

but the leading divergence as →s 0 can be extracted by writing ˜ ( ) ( )=αβ α β
=

εkV q z z k/ 2
d 2 2  

for �ks 1 and cutting o the resulting integral at k  =  1/s; the regularisation is thus 
equivalent to the Pauli–Villars regularisation [18]. The result of the regularisation is 
that the correction to the bare conductivity behaves as

′σ
σ π

∆
∼ −

=
→

+ −⎛
⎝
⎜

⎞
⎠
⎟ q z z m sm

T

0 log

16
.

d
s0 2, 3d int.

0

2 2 2

ε
( ) ( )

 (49)

The prefactor to the logarithmic correction is small at small coupling constant Γ and 
at small density; the argument of the logarithmic term behaves as ρ̄Γs . For charges 
restricted to a plane we thus see that the change in the conductivity due to interactions 

behaves as ¯ ( ¯ )ρ ρΓ slog  as opposed to the ρ̄  correction seen when they are free to move 
in three dimensions.

4.3.2. Confinement to a line. In one dimension, for charges restricted to the line 
y  =  z  =  0, the eective interaction is

˜ ( ) ˜ ( )
( )∫ π

=αβ αβ
=

V k V k k k
k k

, ,
d d

2
,

d
y z

z y1

2 (50)

and thus

˜ ( )

[ ] [ ]
⎜ ⎟
⎛
⎝

⎞
⎠

∫π
=

−

+αβ
α β= ∞

+ +α β� �

ε
V k

q z z

u
u u

2

exp

1
d .

d

k u

1
2

0

1

2

2

2 2 2 2

 (51)

The asymptotic behavior of the potential is given by

( )˜ ( )
→ π
∼ − +αβ

α β
α β

=
� �

ε
V k

q z z
k

2
log ,

d

k

1

0

2
2 2

 (52)

˜ ( )
( )

[ ]
→

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟π

∼
+

−
+

αβ
α β

α β=

∞ � �

� �

ε
V k

k

k1

2
exp

2
.

d

k

1

2 2 2

2 2 2

 (53)

Again this regularises all integrals appearing in the formulas for the conductivity both 
at zero and finite field.

In the simple case where = =+ −� � s/ 2, the scaling form of ˜ ( )αβ
=

V k
d 1

 is given by

˜ ( ) ( )=αβ
α β=

ε
V k

q z z
f ks .

d 1
2

 (54)

The regularized correction to the bare conductivity thus behaves as
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′σ
σ π

∆
∼ − ′

=
→

+ −⎛
⎝
⎜

⎞
⎠
⎟ q z z m

Ts
g m m

0
,

d
s0 1, 3d int.

0

2 2

ε
( ) ( ) (55)

where ( )′g m m,  is a finite function of m and ′m  given by

( )
[ ( ) ][ ( ) ]∫ ′

=
+ +

′
∞

− −g m m
p

f p m f p m
,

d
.

0 1 2 1 2 (56)

Interestingly, the integral defining g turns out to be convergent when = =′m m 0. This 
means that, for small densities, the change in the conductivity due to interactions is 
proportional to ρ̄.

5. Field dependence for monovalent salts

5.1. Correlation function

Here we examine the case of monovalent salts (with no background charge, = − =+ −z z 1 
and ¯ ¯ ¯ρ ρ ρ= =+ − ), which turns out to be the simplest case where one can obtain com-
pletely analytical results for the conductivity at any applied field. We define the inverse 
Debye length m and dimensionless electric field F  by

ρ̄
=
ε

m
q

T

2
,2

2

 (57)

=F E
q

mT
. (58)

For this case the correlation function is given by
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=
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(59)
The pair correlation functions ( )++ xh  and ( )−+ xh , defined by

( )
¯

( )
( )

¯ρ
δ δ
ρ

= −αβ αβ
αβ

x x
x

h C
1

,
2 (60)

are plotted in figures 1 and 2 for dierent values of the electric field; they give the 
change in density of cations and anions, respectively, around a cation. These figures are 

obtained by inversing the Fourier transforms ˜ ( )αβh k . Despite the fact that the expres-
sions for the conductivity that we have found are finite, the integral of ˜ ( )αβh k  is diver-

gent at large k, meaning that the inverse Fourier transform needs to be regularized 
(the corresponding integrals at large k decay as 1/k2 indicating a ∣ ∣x1/  divergence at 
small ∣ ∣x  in three dimensions). We have thus regularized the resulting integrals using a 
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Gaussian cut-o function ( )−� kexp /22 2 , the pair correlation function shown is thus the 
convolution of the corresponding pair correlation functions with a Gaussian of width �. 
In figures 1 and 2, the cut-o length is set to the pixel size, = −� m0.2 1.

In figure 1, at zero field, ( )++ xh  is negative about the origin and then decays mono-
tonically to zero at large distances. When ≠F 0 we see that the correlations have a 
longer range as screening is destroyed by the field. At larger values of F, the prob-
ability of an other positive ion being present around a given positive ion is largest in 
the direction of the field as indicated by the lobes on the figure. In figure 2, without 
external field, the correlation function is positive about the origin and decays to zero as 
the distance from the origin increases, indicating screening of positive charges (at the 
origin) by negative charges. As F is turned on, the negative ions are again more likely 
to be found in the direction of the applied field but most likely in front of the positive 
charge than behind, which of course makes physical sense. There is also a region of 
depletion of negative ions further from the cations, an eect which as also been seen 
in the pair correlation function in recent simulations of a lattice based ionic model [6] 
(the correlation function ( ) ( )= +−+ −+x xg h 1 becomes less than 1 in their figure 4). 
Both figures thus indicate a tendency for the positive and negative ions to form chains 
in the direction of the field.

Figure 1. Pair correlation function ( )++ xh  (equation (59)) for dierent values of 
the dimensionless electric field F  =  qE/(mT) (equation (58)); the unit of length 
is the Debye screening length m−1 defined in equation (57). The coordinates ∥x  
and ⊥x  denote the directions parallel and perpendicular, respectively, to the field 
direction. Multiplied by ρ̄, the pair correlation function does not depend on ρ̄. As 
explained in the main text, ( )++ xh  is regularized by convolution with a Gaussian 
whose width is set to the pixel size.
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Figure 2. Pair correlation function ( )−+ xh  (equation (59)) in monovalent 
electrolytes for dierent values of the dimensionless electric field F  =  qE/(mT) 
(equation (58)); the unit of length is the Debye screening length m−1 (equation 
(57)). The coordinates ∥x  and ⊥x  denote the directions parallel and perpendicular, 
respectively, to the field direction. Multiplied by ρ̄, the pair correlation function 
does not depend on ρ̄. As explained in the main text, ( )−+ xh  is regularized by 
convolution with a Gaussian whose width is set to the pixel size.
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Figure 3. Conductivity correction for d  =  3 as a function of the (dimensionless) 
applied electric field (solid line), and asymptotic expression σ∆ ∼ F1/  (dashed).
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5.2. Conductivity

The field dependent conductivity is given by

( )
¯ ( )( ) ( )

∥

∥
∫

σ
σ ρ π

= −
+ + +

uF m u

u u u F u
1

2 2 1

d

2
,

d

d
0

2

2 4 2 2 2

 

(61)

where, again, the subscript ‘∥’ denotes the component parallel to the electric field E. 
For a finite field and a dimension d  =  3, we need to evaluate the integral

( )( ) ( ) ( )( )
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∫ ∫ ∫π π
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 (62)
The integral over u gives
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This gives the final result

( )
¯

( )σ
σ πρ

= − + −
+

− +
⎡

⎣
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥
⎥

F m

F
F F

F

F
F F1

32
1 arctan

1
2 arctan 2 .

0

3

3
2

2

 

(65)

The first term in brackets is dominant at large fields and the correction decays as 1/F. 
This result agrees with that of Onsager and Kim [4]. The expression (65) is plotted 
on figure 3. The correction decays as the applied field increases, which is the so called 
Wien eect in simple strong electrolytes.

In lower dimensions, with the corresponding Coulomb interaction in that dimen-
sion, the conductivity at finite field is given by
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(67)

http://dx.doi.org/10.1088/1742-5468/2016/02/023106


The conductivity of strong electrolytes from stochastic density functional theory

16doi:10.1088/1742-5468/2016/02/023106

J. S
tat. M

ech. (2016) 023106

6. Conclusion

We have used SDFT to compute the conductivity of strong electrolytes. Our approach 
is rather simple and compact and reproduces classical results of Onsager and collabora-
tors which were derived by very dierent methods. We have furthermore seen how the 
calculations of Onsager are modified when there is a static uniform background charge. 
In this situation, even a system where all ions have the same charge but have dierent 
mobilities exhibits a negative correction to the bare conductivity. Our formalism has 
also allowed us to generalize the results of Onsager to Coulomb systems in arbitrary 
dimensions.

Clearly our results are applicable to more general systems; they can be applied to 
more complex electrostatic models, for instance models with non-local dielectric con-
stants [16]. The general formulas given here can also be applied to the motion of ions 
confined to quasi-1d geometries, e.g. in carbon or boron-nitride nanotubes [19–21]. 
Finally, our formalism can treat general non-electrostatic interactions like steric inter-
actions, which enters in the dynamics of ionic liquids [22].

Further extensions of this work are clearly possible, one could for example analyze 
the influence of a solvent on the conductivity. The eect of a solvent in Onsager’s 
calcul ations is in fact additive at the level of approximation he employed, the addi-
tional term is generated by the solvent induced flow due to the movement of the ions. 
Using the formalism here it is possible that the perturbation analysis could be carried 
out in a self consistent manner thus potentially improving its results at higher concen-
trations in three dimensions.
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