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Non-Gaussian fluctuations of a probe coupled to a Gaussian field
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The motion of a colloidal probe in a complex fluid, such as a micellar solution, is usually described by the
generalized Langevin equation, which is linear. However, recent numerical simulations and experiments have
shown that this linear model fails when the probe is confined and that the intrinsic dynamics of the probe
is actually nonlinear. Noting that the kurtosis of the displacement of the probe may reveal the nonlinearity
of its dynamics also in the absence confinement, we compute it for a probe coupled to a Gaussian field and
possibly trapped by a harmonic potential. We show that the excess kurtosis increases from zero at short times,
reaches a maximum, and then decays algebraically at long times, with an exponent which depends on the spatial
dimensionality and on the features and correlations of the dynamics of the field. Our analytical predictions are
confirmed by numerical simulations of the stochastic dynamics of the probe and the field where the latter is
represented by a finite number of modes.
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I. INTRODUCTION

Complex fluids, such as polymer solutions or colloidal sus-
pensions, are usually described by their frequency-dependent
complex shear modulus, which characterizes the linear re-
sponse of the fluid [1]. The motion of a colloidal probe
immersed in such fluids then follows a linear generalized
Langevin equation (GLE), with a memory kernel which is
directly related to the complex modulus of the fluid [2,3]. With
such a GLE, the temporal correlations of the velocity of the
probe can be expressed as a function of the memory kernel
[4]. In microrheology, this relation is inverted in order to infer
the complex modulus of the fluid from the observation of the
motion of the probe [3]. This technique is now widely used to
probe complex fluids [5–7].

In a micellar solution, the GLE has recently been success-
ful in describing the transitions of a probe in a double-well
potential [8] and the recoil dynamics when the external trap
which drags the probe through the fluid is suddenly switched
off [9]. This description is valid as long as the fluid remains
within the linear response regime. If the probe is driven suf-
ficiently fast, as in active microrheology [10,11], then the
response of the fluid is nonlinear and thus the dynamics of
the probe cannot be captured by the GLE, which is linear
[12,13]. Similarly, recent molecular dynamics simulations and
experiments have shown that the GLE encounters limitations
even in describing the motion of a probe in a static trap at
equilibrium [14,15]. In these examples, the probe is held in
a harmonic trap and an effective memory kernel is inferred
from the temporal correlations of the position of the probe
by assuming that the motion of the probe is described by the
GLE. The resulting effective memory kernel, however, turns

out to depend on the stiffness of the trap, meaning that it
does not describe solely the coupling between the probe and
the solvent. Accordingly, while on the one hand the linear
GLE has been a successful model of the effective dynamics of
probe particles, on the other, the accumulating evidence that
it cannot fully capture it calls for the introduction of more
general, nonlinear models for the probe dynamics.

A stochastic Prandtl-Tomlinson model, where the probe is
coupled to a virtual “bath particle” via a sinusoidal potential,
has been proposed to describe the interaction between the
probe and a micellar solution [16,17], but the parameters
fitted to the correlations also depend on the parameters of
the confining potential, e.g., on its stiffness [15]. Recently, it
has been shown that coupling the probe to a scalar Gaussian
field also reproduces qualitatively the stiffness dependence
of the effective memory kernel [18]. In this model, the field
can be integrated out, resulting in a non-Markovian dynamics
for the probe, with a nonlinear memory kernel and a colored
noise, which allowed the perturbative analytical calculation
of the first and second moments of the probe displacement
[19–21]. This effective non-Markovian dynamics turned out to
affect the relaxation of the average position of the probe after
being released from outside the center of a harmonic trap [22].
Similarly, it determines the synchronization of the motion of
two probe particles interacting with the same field [23], the
spatial distribution of a single probe when the field is confined
within a film [24], or it might even give rise to oscillations of
the average position of the probe when the harmonic trap is
dragged at a constant speed [25]. In this case, as a function of
the dragging speed, the effective friction shows a rich behavior
beyond Stoke’s law [26]. While the emergence of some of
the phenomena investigated in these studies hinges on the
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nonlinearity of the effective equation of motion of the probe,
identifying more direct markers of these features would help
to devise a quantitative nonlinear model.

The kurtosis of the displacement emerges, in this respect,
as a natural observable to characterize the nonlinearity of the
equations of motion [27]. Indeed, in the presence of Gaus-
sian noise in linear equations of motion, the displacement of
the probe between two arbitrary times is a Gaussian random
variable, and therefore its kurtosis takes the value 3. An ad-
vantage of focusing on the kurtosis is that there is no need
to determine the effective memory kernel and its dependence
on the parameters of the system in order to demonstrate a
nonlinear behavior. Another advantage is that the kurtosis can
be measured for a probe held in a harmonic trap as well as
when it is freely diffusing. Because of these advantages, the
kurtosis, and more generally the deviations of the statistics
of the probe displacements from a Gaussian distribution, have
been widely used in order to characterize the dynamics of par-
ticles in complex systems, such as entangled actin networks
[28] or baths of swimmers [29,30].

Here we compute the kurtosis of the spatial displacement
in a time t of a probe particle coupled to a Gaussian field
and held in a harmonic trap. Both the probe particle and the
field are in contact with an equilibrium thermal bath. Our
calculation is perturbative in the coupling between the probe
and the field and relies on the path integral method introduced
in Ref. [19]. This method has been used previously in order to
compute first- and second-order moments of the displacement
[19–21]; here we extend this approach to the determination of
a fourth-order moment. Based on this analysis, we find that
the excess kurtosis—the difference between its actual value
and that for Gaussian fluctuations—grows at short times as
t2, reaches a maximum upon increasing t , and then it decays
algebraically to zero with an exponent which we determine
as a function of the properties of the field, the dimensionality
d of space, and of the presence or absence of the trap. Our
predictions are confirmed by numerical simulations of the
stochastic dynamics in d = 1, where the Gaussian field is
represented by 10 independent modes.

This article is organized as follows: In Sec. II, we introduce
the model and the observables that we compute. In Sec. III,
we calculate the second- and fourth-order moments of the
displacement of the probe using the path-integral formalism.
In Sec. IV, we describe the simulations and compare their
results with our theoretical predictions. In Sec. V, we analyze
the short- and long-time asymptotic behavior of the second-
and fourth-order moments of the displacement. We present
our conclusions and perspectives in Sec. VI.

II. MODEL

A. Definition

We consider a probe with position X (t ) ∈ Rd held in a
harmonic trap with stiffness κ and coupled to a Gaussian
field φ(x, t ) [18,19,21–26,31,32]. The energy of the system is
given by

H[X , φ] = κ

2
X 2 + 1

2

∫
dx φ(x)Aφ(x) − Kφ(X ). (1)

The operator A describes the energy of the field φ(x, t ) and K
determine its linear coupling to the probe.

We assume an overdamped Langevin dynamics for the
system composed by the probe and the field. In particular, the
dynamics of the field reads

φ̇(x, t ) = −R
δH

δφ(x, t )
+ ξ (x, t ), (2)

= −RAφ(x, t ) + RKδ(x − X (t )) + ξ (x, t ), (3)

where R is the mobility operator and ξ (x, t ) a Gaussian white
noise with correlation function

〈ξ (x, t )ξ (x′, t ′)〉 = 2T R(x − x′)δ(t − t ′), (4)

where T is the thermal energy. As anticipated in the intro-
duction, the dynamics of the field is determined, inter alia,
by the coupling to an equilibrium thermal bath and there-
fore the dynamics prescribed by Eqs. (3) and (4) satisfy the
fluctuation-dissipation relation.

Similarly to the case of the field, the overdamped Langevin
dynamics of the probe is given by

Ẋ (t ) = −γ −1∇X H + η(t )

= −ω0X (t ) + γ −1∇Kφ(X (t ), t ) + η(t ), (5)

where γ is the friction coefficient of the probe due to the
solvent, ω0 = κ/γ is the relaxation rate of the position of the
probe in the harmonic trap, and η(t ) is a Gaussian white noise
with correlation function

〈ημ(t )ην (t ′)〉 = 2D0δμνδ(t − t ′), (6)

where μ, ν ∈ {1, . . . , d} indicate the various spatial compo-
nents of a vector. In the expression above we have introduced
the diffusion coefficient D0 = T/γ of the probe for K = 0,
i.e., in the absence of the coupling to the field, which we refer
to as the bare diffusion coefficient, denoted by the subscript 0.
As in the case of φ(x, t ), the dynamics of the particle satisfies
the fluctuation-dissipation relation and, as a consequence, the
distribution function of the field and the particle in equilib-
rium is determined by the Boltzmann factor ∝ e−H/T with the
Hamiltonian H in Eq. (1) and the thermal energy T .

B. Examples

The field φ(x, t ) can represent various scalar quantities
describing the environment of the probe; a few examples are
discussed here.

Considering a colloidal probe in a binary liquid mixture
[33], the field φ(x, t ) may represent the fluctuations of the
concentration difference between the two components, i.e.,
the order parameter of the possible demixing transition. For
weak fluctuations, the energy of the field can be assumed to
be quadratic with

A = −∇2 + m2, (7)

in which the fluctuations of the field in equilibrium are cor-
related across a typical distance set by the correlation length
ξ = m−1. If the surface of the colloid has a preferential ad-
sorption for one of the two components of the mixture, then
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the coupling to the probe can be effectively modelled by

Kφ(X ) ≡
∫

dx K (x − X )φ(x), (8)

where the integral kernel K (x) is an isotropic function which
vanishes rapidly on increasing |x| beyond a certain value
a, representing the “radius” of the probe. Neglecting the
coupling to hydrodynamics—accounting for which would be
beyond the scope of the present work—the natural and sim-
plest dynamics that accounts for the local conservation of the
field corresponds to R ∝ −∇2, i.e., to the so-called model
B of Ref. [34]. In the absence of this local conservation the
dynamics would be purely relaxational with constant R, cor-
responding to the so-called model A of Ref. [34]. Model A
is relevant, for instance, for describing the case in which the
field φ(x, t ) represents the local magnetization of a magnetic
material.

If the probe diffuses in a colloidal bath, then the field
φ(x, t ) is associated with the density fluctuations of the bath.
In the limit in which the bath is very dense and the interac-
tions between the colloids are weak, the density fluctuations
turn out to be Gaussian with A(x) = T + ρ̄Vb(x) and K (x) =
ρ̄V (x), where ρ̄ is the average density of the bath and Vb(x)
[respectively, V (x)] is the pair potential describing the interac-
tion between two bath particles (respectively, the probe and a
bath particle) [20]. The associated dynamics satisfies the local
conservation of the density, with R = −γ −1

b ∇2, where γb is
the friction coefficient of the bath colloids.

The probe may also model a membrane protein coupled to
some local membrane parameter, such as its thickness [35] or
curvature [36,37]. In the simplest model devised to describe
the coupling to the curvature, the field φ(x, t ) represents the
height of the membrane with respect to a reference plane.
The energy of the membrane can then be expressed in terms
of the the Helfrich Hamiltonian [38] which is characterized
by having A = κ∇4 − σ∇2, where κ is the bending rigidity
of the membrane and σ is its tension. For a weak sponta-
neous curvature of the protein Cp, the coupling is given by
K (x) = κCpG(x)∇2, where G(x) describes the shape of the
protein. Last, the dynamics of the height field is controlled by
the displacement of the fluid above and below the membrane,
so that the operator R is given by the Oseen tensor. This, in
Fourier space, corresponds to R̃(k) = (4ηk)−1, where η is the
viscosity of the fluid.

C. Cumulant generating function

As anticipated in Sec. I, we consider here the particle
trajectory X (t ) and focus on the statistics of its displacements.
In particular, we assume that, at the initial time t0, the particle
is at position X (t0) and, correspondingly, the field has a certain
configuration φ(x, t0) (alternatively, these position and config-
uration may be drawn from some probability distributions). In
the limit t0 → −∞ considered here, the initial conditions do
not affect the dynamics of the system at time t � 0 (both in
the presence or in the absence of the trap), which becomes
stationary, and thus the displacement within a time interval
t can be simply expressed as Y (t ) = X (t ) − X (0). In order
to compute the moments of Y (t ) we will use the cumulant

generating function

ψ (q, t ) = ln〈eiq·Y (t )〉. (9)

Expanding this function in powers of q gives access to the
cumulants of the displacement Y . For an isotropic system,
ψ (q, t ) depends only on the norm q = |q|, the odd cumulants
vanish, and the expansion reads

ψ (q, t ) = −1

2
ψ (2)(t )q2 + 1

4!
ψ (4)(t )q4 + O(q6). (10)

In terms of the coefficients ψ (2)(t ) and ψ (4)(t ) of this expan-
sion, the cumulants of the components of Y are given by

〈Yμ(t )Yν (t )〉c = ψ (2)(t )δμν, (11)

〈Yμ(t )Yν (t )Yσ (t )Yτ (t )〉c

= ψ (4)(t )
δμνδστ + δμσ δντ + δμτ δνσ

3
. (12)

The fourth cumulant of the displacement along the direction
1 is 〈

Y 4
1 (t )

〉
c = 〈

Y 4
1 (t )

〉 − 3
〈
Y 2

1 (t )
〉2 = ψ (4)(t ), (13)

and it vanishes if Y1 has a Gaussian distribution. The excess
kurtosis is therefore defined as

γ (t ) =
〈
Y 4

1 (t )
〉
c〈

Y 2
1 (t )

〉2 = ψ (4)(t )

[ψ (2)(t )]2 . (14)

Without coupling to the field, i.e., for K = 0, Y (t ) is Gaussian
with variance

〈Yμ(t )Yν (t )〉0 = σ 2
0 (t )δμν, (15)

where we introduced

σ 2
0 (t ) = 2D0

ω0
(1 − e−ω0|t |) = 2T

κ
(1 − e−ω0|t |), (16)

and used the definitions of ω0 and D0 reported after Eqs. (5)
and (6), respectively. Accordingly, the bare cumulant generat-
ing function is given by

ψ0(q, t ) = − 1
2σ 2

0 (t )q2. (17)

This cumulant generating function is quadratic in q, meaning
that ψ

(4)
0 (t ) = 0 [see the decomposition in Eq. (10) for the

case of ψ0(q, t )] and therefore the excess kurtosis γ (t ) as well
as all the higher-order cumulants vanish at all times.

Here we compute perturbatively the correction to the cu-
mulant generating function ψ (q, t ) due to the probe-field
coupling K . At the lowest nontrivial order in such a coupling,
expanding this correction in q gives us access to the correction
to the mean-square displacement and to the excess kurtosis.

III. PATH-INTEGRAL CALCULATION

A. Path-integral formalism and perturbative correction

The dynamics of the field in Eq. (3) is linear and can be
integrated, leading to an effective dynamics of the probe with
a nonlinear memory [18,19]. Following Refs. [19,21], we use
a path-integral representation of the effective dynamics of
the probe in order to compute perturbatively the correction
to the cumulant generating function ψ (q, t ). The perturbative
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expansion is done in terms of increasing powers of the probe-
field coupling K [see Eq. (1)].

The correction to the observable eψ (q,t ) = 〈eiq·Y (t )〉 [see
Eq. (9)] is calculated to be

〈eiq·Y (t )〉 = 〈eiq·Y (t )〉0 − 〈eiq·Y (t )Sint〉0 + O(K4)

= e−q2σ 2
0 (t )/2 − 〈eiq·Y (t )Sint〉0 + O(K4), (18)

where Sint is the interaction part of the Janssen-De Dominicis
action. This interaction can be written as (see, e.g., Sec. 4.1 in
Ref. [39])

Sint[X , P] =
∫

dt dt ′Pμ(t )[iFμ(X (t ) − X (t ′), t − t ′)

+ T Gμν (X (t ) − X (t ′), t − t ′)Pν (t ′)]θ (t − t ′),

(19)

where P(t ) is the so-called response field, θ (t ) is the Heavi-
side function, and Fμ(x, t ) and Gμν (x, t ) are given by

Fμ(X , t ) = 1

γ

∫
dk

(2π )d
ikμR̃K̃2e−R̃Ãt+ik·X , (20)

Gμν (X , t ) = 1

γ 2

∫
dk

(2π )d
kμkν

K̃2

Ã
e−R̃Ã|t |+ik·X . (21)

These expressions involve the Fourier transforms R̃(k), Ã(k),
and K̃ (k) of the operators R, A, and K , respectively; the
dependence on k of these transforms is omitted to lighten
the notations. In addition, below we consider the case of an
isotropic system, such that these operators depend on k only
via its modulus k = |k|. Note that the interaction action Sint is

quadratic in the probe-field interaction K and this is the order
in perturbation theory which we focus on below.

The averages 〈· · · 〉0 in Eq. (18) are performed for the
unperturbed Gaussian fields X (t ) and P(t ), which have zero
mean and correlations

〈Pμ(t )Pν (t ′)〉0 = 0, (22)

〈Xμ(t )Pν (t ′)〉0 = ie−ω0(t−t ′ )θ (t − t ′)δμν ≡ iR(t − t ′)δμν,

(23)

〈Xμ(t )Xν (t ′)〉0 = D0

ω0
e−ω0|t−t ′|δμν = T

κ
R(|t − t ′|)δμν, (24)

where we have defined the response function,

R(t ) = e−ω0tθ (t ), (25)

and used the definitions of ω0 and D0 reported after Eqs. (5)
and (6), respectively. From these expressions, one can easily
calculate the mean-square displacement,

〈[X (t ) − X (t ′)]μ[X (t ) − X (t ′)]ν〉0

= 2T

κ
[1 − R(|t − t ′|)]δμν ≡ σ 2

0 (t − t ′)δμν. (26)

The cumulant generating function following from Eq. (18) is,
at order K2,

ψ (q, t ) = −q2

2
σ 2

0 (t ) − e
q2

2 σ 2
0 (t )〈eiq·Y (t )Sint〉0, (27)

= ψ0(q, t ) + ψ2(q, t ),
(28)

where ψ0 is the Gaussian contribution of O(K0) given in
Eq. (17) and ψ2 is due to the coupling to the field and is of
O(K2).

B. Cumulant generating function

In order to calculate ψ2(q, t ) in Eq. (28), we focus on 〈eiq·Y (t )Sint〉0. Taking into account the structure of Sint in Eq. (19) and
the definitions of Fμ and Gμν in Eqs. (20) and (21), respectively, it emerges that this calculation requires the knowledge of the
following quantities, which we determine using Eq. (35) in Ref. [19], i.e.,

〈eiq·Y (t )Pμ(t ′)eik·[X (t ′ )−X (t ′′ )]〉0 = −qμ[R(t − t ′) − R(−t ′)] exp
{ − 1

2

[
σ 2

0 (t )q2 + σ 2
0 (t ′ − t ′′)k2

] − k · qS (t, t ′, t ′′)
}
, (29)

and

〈eiq·Y (t )Pμ(t ′)Pν (t ′′)eik·[X (t ′ )−X (t ′′ )]〉0 = qμ[R(t − t ′) − R(−t ′)]{qν[R(t − t ′′) − R(−t ′′)] + kνR(t ′ − t ′′)}
× exp

{ − 1
2

[
σ 2

0 (t )q2 + σ 2
0 (t ′ − t ′′)k2

] − k · qS (t, t ′, t ′′)
}
, (30)

with t ′ > t ′′, where introduced

S (t, t ′, t ′′) = D0

ω0
[R(t − t ′) − R(t − t ′′) − R(|t ′|) + R(|t ′′|)]. (31)

Combining these expressions, we obtain for the correction in Eq. (28),

ψ2(q, t ) = − 1

γ

∫
dk

(2π)d

K̃2

Ã
(k · q)

∫
dt ′dt ′′ θ (t ′ − t ′′)e−R̃Ã(t ′−t ′′ )− k2

2 σ 2
0 (t ′−t ′′ )−k·qS(t,t ′,t ′′ )

× [R(t − t ′) − R(−t ′)]{R̃Ã + D0{k · q[R(t − t ′′) − R(−t ′′)] + k2R(t ′ − t ′′)}}. (32)

After some simplifications (see Appendix for details), we arrive at

ψ2(q, t ) = 2D2
0q2

ω0T
e−ω0t

∫
dk

(2π )d

k2
1 K̃2

Ã

∫ t

0
ds e(ω0−R̃Ã)s− k2

2 σ 2
0 (s)J0

(
4D0q

ω0
k1e−ω0t/2 sinh

(ω0s

2

)
,
ω0(t − s)

2

)
, (33)
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where J0 is the lower-incomplete form of the modified Bessel
function of the second kind:

J0(z,w) =
∫ w

0
dv exp(−z cosh v). (34)

Equation (33) describes in full generality the statistical effects
of the probe-field coupling, at the lowest nontrivial perturba-
tive order in that coupling.

C. Moments of the displacement

The various moments of the displacement Y (t ) are ob-
tained by expanding ψ (q, t ) in Eq. (28) in powers of q,
taking into account also Eq. (33). In particular, as the bare
term ψ0(q, t ) is already quadratic in q = |q|, non-Gaussian
contributions to the kurtosis can be obtained by expanding the
correction ψ2(q = |q|, t ) in powers of q, according to

ψ2(q, t ) = −1

2
ψ

(2)
2 (t )q2 + 1

4!
ψ

(4)
2 (t )q4 + O(q6). (35)

In order to determine ψ
(2)
2 and ψ

(4)
2 one needs to expand the

integral expression of J0(z,w) in Eq. (34) in powers of its
first argument z ∝ qk1. As the resulting terms which are odd
powers of z do not contribute to the integral in Eq. (33) after
integration over k, we do not need to compute them,

J0(z,w) =
∫ w

0
dv

[
1 + z2

2
(cosh v)2

]
+ O(z4)

+ odd powers of z (36)

= w + z2

8
[sinh(2w) + 2w] + O(z4)

+ odd powers of z. (37)

Substituting this expansion in Eq. (33), we get

ψ
(2)
2 (t ) = −2D2

0

T
e−ω0t

∫
dk

(2π)d

k2
1 K̃2

Ã

×
∫ t

0
ds e(ω0−R̃Ã)s− k2

2 σ 2
0 (s)(t − s), (38)

ψ
(4)
2 (t ) = 96D4

0

T ω3
0

e−2ω0t
∫

dk
(2π)d

k4
1K̃2

Ã

×
∫ t

0
ds e(ω0−R̃Ã)s− k2

2 σ 2
0 (s) sinh2

(ω0s

2

)
× [sinh(ω0(t − s)) + ω0(t − s)], (39)

Under the assumption of an isotropic system, the factors k2
1

in Eq. (38) and k4
1 in Eq. (39) can be replaced by k2/d and

3k4/[d (d + 2)], respectively. The latter follows from the fact
that a rotationally invariant integral of the product kμkνkσ kτ

has to be proportional to δμνδστ + δμσ δντ + δμτ δνσ . The re-
maining integral over the angle of k renders the d-dimensional
solid angle �d = 2πd/2/�(d/2), leading to

ψ
(2)
2 (t ) = −χ2

D2
0

T
e−ω0t

∫ ∞

0
dk

kd+1K̃2

Ã

×
∫ t

0
ds e(ω0−R̃Ã)s− k2

2 σ 2
0 (s)(t − s), (40)

ψ
(4)
2 (t ) = χ4

D4
0

T ω3
0

e−2ω0t
∫ ∞

0
dk

kd+3K̃2

Ã

×
∫ t

0
ds e(ω0−R̃Ã)s− k2

2 σ 2
0 (s) sinh2

(ω0s

2

)
× [sinh(ω0(t − s)) + ω0(t − s)], (41)

where we have introduced the numerical factors

χ2 = 2�d

d (2π)d
= 4

d (4π )d/2�(d/2)
, (42)

χ4 = 288�d

d (d + 2)(2π )d
= 576

d (d + 2)(4π )d/2�(d/2)
. (43)

Using these expressions into Eqs. (35) and (28), the resulting
ψ (q, t ) can be expanded as in Eq. (10), finding

ψ (2)(t ) = σ 2
0 (t ) + ψ

(2)
2 (t ) + O(K4), (44)

ψ (4)(t ) = ψ
(4)
2 (t ) + O(K4). (45)

Accordingly, the excess kurtosis in Eq. (14) is given, neglect-
ing O(K4), by

γ (t ) = ψ (4)(t )

[ψ (2)(t )]2 = ψ
(4)
2 (t )[

σ 2
0 (t )

]2

= χ4

4

D2
0

T ω0

1

(eω0t − 1)2

∫ ∞

0
dk

kd+3K̃2

Ã

×
∫ t

0
ds e(ω0−R̃Ã)s− k2

2 σ 2
0 (s)

× sinh2

(
ω0s

2

)
[sinh(ω0(t − s)) + ω0(t − s)], (46)

where we have used Eqs. (16) and (41). Equation (40) for the
mean-square displacement and Eq. (46) for the excess kurtosis
are the main predictions of this work.

D. Free probe

The case of a freely diffusing probe can be obtained by
setting the stiffness κ of the trap to zero and thus by con-
sidering ω0 → 0 [see the definition of ω0 after Eq. (5)] and
σ 2

0 (t ) → 2D0t [see Eq. (16)]. The second moment in Eq. (40)
becomes, in this case,

ψ
(2)
2 (t ) = −χ2D2

0

T

∫ ∞

0
dk

kd+1K̃2

Ãα2
(αt − 1 + e−αt ), (47)

where we have introduced the relaxation rate

α(k) = R̃(k)Ã(k) + D0k2. (48)

The “effective diffusion coefficient” is naturally defined as

D(t ) =
〈
Y 2

1 (t )
〉

2t
= ψ2(t )

2t
, (49)

where we used Eq. (11). Taking into account Eqs. (45) and
(47), from the latter expression above, one finds at order K2,
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that

D(t )

D0
− 1 = ψ

(2)
2 (t )

2D0t
= −χ2D0

2T

×
∫ ∞

0
dk

kd+1K̃2

Ãα2

(
α − 1 − e−αt

t

)
. (50)

For the fourth moment, instead, from Eq. (41) we have

ψ
(4)
2 (t ) = χ4D4

0

2T

∫ ∞

0
dk

kd+3K̃2

Ã

∫ t

0
ds e−αss2(t − s) (51)

= χ4D4
0

2T

∫ ∞

0
dk

kd+3K̃2

Ãα4

× [2αt − 6 + (α2t2 + 4αt + 6)e−αt ]. (52)

Accordingly, the excess kurtosis at order K2 is given by

γ (t ) = ψ
(4)
2 (t )

(2D0t )2
= χ4D2

0

8T t2

∫ ∞

0
dk

kd+3K̃2

Ãα4

× [2αt − 6 + (α2t2 + 4αt + 6)e−αt ]. (53)

In Sec. V we shall discuss the qualitative features of the
dependence of D(t ) and γ (t ) above on time t for some specific
choices of the operators A, K , and R, which define the model
in full generality. In the next section, instead, we focus on the
comparison between our theoretical predictions and the nu-
merical simulations of the stochastic dynamics of the system.

IV. NUMERICAL SIMULATIONS

A. Model

In order to compare the perturbative predictions obtained
in the previous sections with the (nonperturbative) results of
numerical simulations, we focus on the specific model with
Ã(k) = k2, R̃(k) = 1, K̃ (k) = h = 0.5, D0 = 1, and T = 1,
in spatial dimension d = 1. The stochastic dynamics of the
field [Eq. (3)] is simulated in Fourier space [19,40] with a
finite number of modes with wave vectors k = 1, . . . , N ; here
we take N = 10. The stochastic dynamics of the probe is
simulated in real space; the force due to the field—given by
second term on the right-hand side of Eq. (5)—is evaluated at
each time step from the Fourier coefficients of the field. This
method avoids using a lattice model, which would require a
discretization of the field and an interpolation step to compute
its effect on the (off-lattice) particle. Note that, taking into
account the smallest wave vector and counting the number
of degrees of freedom, the present numerical approach cor-
responds to a discretization on a lattice with spacing π/L,
extension L = 2π , and periodic boundary conditions. The
stochastic differential equations for the position of the particle
and for the coefficients of the Fourier modes of the field are
integrated with an o(δt2) scheme [41].

The model chosen here would correspond, in an infinitely
extended system, to a critical Gaussian model for the field,
with nonconserved dynamics and a localized δ-like interaction
with the probe. However, the finite size of the system, encoded
in the smallest wave vector k = 1 makes the field practically
noncritical with correlation length ξ � 2π .

FIG. 1. Probability distribution function (PDF) of the displace-
ment Y (τ ∗ = 2.21) at the time τ ∗ at which the excess kurtosis
attains its maximum. Symbols correspond to the result of numerical
simulations in d = 1 with N = 10 modes for Ã(k) = k2, R̃(k) = 1,
K̃ (k) = 1, D0 = 1, T = 1, and h = 1 without trap, while the dashed
line indicates a Gaussian distribution with the same standard devia-
tion as the numerical data. The discrepancy between symbols and the
dashed line highlights the non-Gaussian nature of the fluctuations of
the particle position also beyond perturbation theory.

Our perturbative, analytical predictions for the second- and
fourth-order moments of the displacement and therefore for
the excess kurtosis can be adapted to the case in which one
considers a finite number of modes in the numerical simula-
tions. In particular, for d = 1 the integrals over the modes in
Eqs. (40), (41), and (46) are replaced by discrete sums as

∫ ∞

0
dk −→

N∑
k=1

. (54)

B. Numerical results

Figure 1 shows, in the absence of the trap, the probability
distribution function (PDF) of the displacement Y (t = τ ∗) in
a time interval τ ∗ = 2.21, where τ ∗ is the value of the time
t at which the excess kurtosis γ (t ) of the displacement is
maximal (see below). The PDF obtained from our numerical
simulations is compared with a Gaussian distribution with the
same variance, showing that the former is Gaussian for small
values of the displacement while its tails are slightly heavier
than those of a Gaussian distribution. In order to characterize
this PDF in more detail, we now analyze its lowest cumulants:
the mean-squared displacement and the excess kurtosis.

We first consider the correction to the time-dependent dif-
fusion coefficient D(t ) which, in the presence of a potential,
can still be formally defined as in Eq. (49) in terms of the
second moment 〈Y 2(t )〉 of the displacement Y (t ). According
to Eq. (45), in the absence of the interaction with the field,
D(t ) takes the bare value D0(t ) = σ 2

0 (t )/(2t ) with σ 2
0 given in

Eq. (16). Accordingly, their difference,

δD(t ) = D(t ) − D0(t ) = D(t ) − σ 2
0 (t )

2t
, (55)

can be calculated via numerical simulations and can be com-
pared with its theoretical perturbative estimate at O(K2) given
by ψ

(2)
2 (t )/(2t ) with ψ

(2)
2 provided in Eq. (40). The results
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FIG. 2. Comparison between the analytic perturbative predic-
tions at order K2 (solid lines) and the numerical simulations
(symbols) in d = 1 with N = 10 modes for Ã(k) = k2, R̃(k) = 1,
K̃ (k) = 1, D0 = 1, T = 1, and h = 0.5 in the absence (blue cir-
cles) or in the presence (red squares) of a trap with relaxation rate
ω0 = 0.5. (a) Correction δD(t ) to the diffusion coefficient D(t ) [see
Eqs. (49) and (55)] as a function of time t . The analytical predictions
are given by Eq. (50) in the absence of the trap and by Eq. (40) in
its presence. (b) Excess kurtosis γ (t ) as a function of time t . The
corresponding analytical predictions are given by Eq. (53) in the
absence of the trap and by Eq. (46) in its presence.

obtained from numerical simulations in the absence or in the
presence of the trap with relaxation rate ω0 = 0.5 are shown
in Fig. 2(a), with blue circles and red squares, respectively.
The solid lines with the corresponding colors are the perturba-
tive analytical predictions. The agreement between numerical
data and theoretical predictions is very good, except that for
the free probe at large times, where the theoretical predic-
tion overestimates the actual correction; this small difference
might be due to the fact that the actual value of K̃ (k) = h is
large enough to require the inclusion of corrections of order
K4 and higher, which are currently neglected in our O(K2)
theoretical prediction.

The excess kurtosis γ (t ) is defined in Eq. (14) in terms of
the cumulants of the displacement Y (t ). In Fig. 2(b) we show
the results of our numerical simulations in the absence or in
the presence of trap with relaxation rate ω0 = 0.5, with blue
circles and red squares, respectively. As in Fig. 2(a), the solid
lines with the corresponding colors are the perturbative analyt-
ical predictions for γ (t ) in Eqs. (46) and (53). The agreement
between the numerical data and the predictions turns out to
be very good both in the presence and in the absence of
the trap.

The numerical evidence presented here shows that our
predictions for the mean-squared displacement and for the
kurtosis are in good agreement with the results of the sim-
ulations. However, we cannot make a prediction for the

full probability distribution of the displacement, because this
would require the knowledge of all the cumulants.

V. ASYMPTOTIC BEHAVIORS

In this section we analyze the asymptotic behaviors at
short and long times of the correction to the mean-square
displacement and to the kurtosis. For concreteness, we con-
sider a Gaussian field with the energy given by A in Eq. (7),
corresponding to

Ã(k) = k2 + m2, (56)

where m is the inverse of the spatial correlation length ξ of the
fluctuations of the field, with R̃(k) = rkρ , where ρ = 0 cor-
responds to a nonconserved dynamics (model A) and ρ = 2
to a conserved dynamics (model B) [34]. The parameter r
is a diffusion coefficient for ρ = 0 and has the dimension
length4/time for ρ = 2. The probe-field interaction is as-
sumed to be given by K̃ (k) = h exp(−a2k2/2), where a plays
the role of the size of the probe.

Depending on the spatial dimensionality d and on the cor-
relation length ξ , the Fourier integrals involved in Eqs. (40)
and (46) may in principle develop infrared and/or ultraviolet
divergences. The ultraviolet divergences are actually avoided
by considering a probe with a finite linear extension a, which
eventually controls the value of these integrals. The infrared
divergences, instead, are more interesting for the present
study, as they may affect the long-time behavior of the quan-
tities considered here.

A. Short-time behavior

At short times, the correction ψ
(2)
2 (t ) in Eq. (40) to the

MSD and the excess kurtosis in Eq. (46) scale, respectively,
as

ψ
(2)
2 (t ) ∼

t→0
−χ2D2

0

2T
t2

∫ ∞

0
dk

kd+1K̃2

Ã
, (57)

γ (t ) ∼
t→0

χ4D2
0

96T
t2

∫ ∞

0
dk

kd+3K̃2

Ã
. (58)

It is easy to see that the resulting integrands have no di-
vergence for k → 0 and therefore one concludes that both
ψ

(2)
2 (t ) and γ (t ) initially grow as t2 on increasing t . Note that

these integrands are actually independent of R̃(k), i.e., of the
specific dynamics of the field, while they are determined by
its static properties and by the coupling between the field and
the particle, encoded, respectively, in Ã and K̃ . Note also that
this short-time behavior does not depend on the presence of
the trap.

B. Long-time behavior

The long-time behavior of the effective diffusion coeffi-
cient and of the excess kurtosis turn out to depend on the
possible presence of the trap and therefore we discuss sepa-
rately these two cases below.

1. In the absence of the trap

In the absence of the trap, the correction δD(t ) to the
diffusion coefficient reaches its asymptotic value δD∞ at long
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times, with

δD∞ = lim
t→∞ δD(t ) = −χ2D2

0

2T

∫ ∞

0
dk

kd+1K̃2

Ãα
, (59)

where α is given in Eq. (48). If the correlation length m−1

in Eq. (56) is finite, then this integral converges. If the cor-
relation length is infinite, i.e., for m = 0, instead, then the
integral converges only for d > 2. Note that δD∞ provides a
negative correction to the bare diffusion coefficient D0 and
that |δD∞| increases on increasing the strength of K . As
the long-time diffusion coefficient D∞ = D0 + δD∞ has to
be positive, this requires that 0 < −δD∞ < D0, i.e., that the
perturbative expansion up to O(K2) developed here has to fail
for a sufficiently strong particle-field interaction strength K .
In order to understand the behavior of δD when this integral,
instead, diverges (i.e., for d � 2 and m = 0) we change the
integration variable to q = √

tk in Eq. (50), leading to

δD(t ) = D(t ) − D0 = −χ2h2D2
0

2T
t1−d/2

×
∫ ∞

0
dq

qd−5e−a2q2/(2t )

(D0 + rqρ/tρ/2)2

[
q2

(
D0 + rqρ

tρ/2

)
− 1

+ eq2
(

D0+ rqρ

tρ/2

)]
. (60)

In spatial dimensionality d = 1, introducing D′
0 = D0 + r for

model A (ρ = 0) and D′
0 = D0 for model B (ρ = 2), the long-

time behavior turns out to be given by

δD(t ) ∼
t→∞ − h2D2

0

πT
√

D′
0

√
t
∫ ∞

0
d p

p2 − 1 + e−p2

p4

= − 2

3
√

π

h2D2
0

T
√

D′
0

√
t . (61)

For d = 2, instead, taking into account the finite size a of the
particle, Eq. (60) renders

δD(t ) ∼
t→∞ − 1

8π

h2D2
0

T D′
0

ln(t ), (62)

where a enters the inconsequential multiplicative factor which
makes the argument of the logarithm dimensionless. As
already discussed above, the diffusion coefficient D(t ) is pos-
itive by its very definition [see Eq. (49)] and therefore the
correction δD(t ) to the diffusion coefficient, being generi-
cally negative, cannot grow forever. Accordingly, at some
time t∗ such that −δD(t∗) � D0 determined from the previous
equations, the perturbative calculation has to break down.
Note that the increase of δD(t ) on increasing time for d � 2
may indicate the possible occurrence of anomalous diffu-
sion. The different behaviors of the correction ψ

(2)
2 (t ) to the

mean-squared displacement depending on the model, spatial
dimensionality, and value of m are summarized in Table I.

The excess kurtosis in the absence of the trap is given by
Eq. (53) and at long times it behaves as

γ (t ) ∼
t→∞

χ4D2
0

4T t

∫ ∞

0
dk

kd+3K̃2

Ãα3
, (63)

TABLE I. Summary of the long-time behavior of the correction
ψ

(2)
2 (t ) = 2tδD(t ) to the mean-squared displacement, as a function

of time t , discussed in Sec. V B.

Model A Model B

m > 0 m = 0 m > 0 m = 0

No trap Any d t d = 1 t3/2 Same as model A
d = 2 t ln(t )
d > 2 t

With trap e−rm2t t−d/2 t−(d+2)/2 t−d/4

i.e., γ (t ) ∼ t−1, provided that the integral converges, which is
the case if m > 0 and d > 3ρ − 4 or if m = 0 and d > 4. The
behavior of γ (t ) is different if the integral diverges, i.e., for
m = 0 and d � 4 in both model A and model B or for model
B with d � 2 and m �= 0. In both cases, the relaxation rate
α given in Eq. (48) scales as α(k) � D′

0k2, for small values
of k, with D′

0 = D0 + r for model A and m = 0, D′
0 = D0 for

model B and m = 0, and D′
0 = D0 + rm2 for model B and

m > 0.
For m = 0, changing the integration variable to q = √

D′
0tk

in Eq. (53) yields, for d < 4,

γ (t ) ∼
t→∞

χ4D2
0h2

8T D′
0

1+d/2 t1−d/2
∫ ∞

0

dq

q7−d

× [2q2 − 6 + (q4 + 4q2 + 6)e−q2
]. (64)

For d = 4, we get

γ (t ) ∼
t→∞

3

16π2

D2
0h2

T D′
0

3

ln(t )

t
. (65)

Using the same manipulations as above for the case m > 0
and model B (i.e., with ρ = 2), we find, for d = 1,

γ (t ) ∼
t→∞

6√
π

D2
0h2

T m2D′
0

5/2 t−1/2, (66)

while, for d = 2,

γ (t ) ∼
t→∞

9

4π

D2
0h2

T m2D′
0

3

ln(t )

t
. (67)

The different behaviors of the excess kurtosis depending on
the model, spatial dimension and on the value of m are sum-
marized in Table II.

TABLE II. Summary of the long-time behavior of the excess
kurtosis γ (t ) as a function of time t , discussed in Sec. V B.

Model A Model B

m > 0 m = 0 m > 0 m = 0

No trap Any d t−1 d < 4 t−(d−2)/2 d = 1 t−1/2 Same as
d = 4 ln(t )/t d = 2 ln(t )/t model A
d > 4 t−1 d > 2 t−1

With trap e−rm2t t−(d+2)/2 t−(d+4)/2 t−(d+2)/4
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2. In the presence of the trap

In the presence of the trap, the correction ψ
(2)
2 (t ) to the

mean-square displacement is dominated by s � t in the inte-
grand of Eq. (40), leading to

ψ
(2)
2 (t ) = −χ2D2

0

T

∫ ∞

0
dk

kd+1K̃2

Ã

∫ t

0
ds

× e−ω0(t−s)(t − s)e−R̃Ãs−k2σ 2
0 (s)/2

� −χ2D2
0

T ω2
0

∫ ∞

0
dk

kd+1K̃2

Ã
e−R̃Ãt−k2D0/ω0 , (68)

where we have also used that σ 2
0 (t ) → 2D0/ω0 as t → ∞, see

Eq. (16). Depending on the values of m (positive or zero) and
ρ, suitable changes of variables allow one to determine the
algebraic long-time behavior of Eq. (68).

In particular, for ρ = 0 (model A), the decay on increasing
t is exponential with rate rm2 if m > 0. If m = 0, instead, then
we define q = √

rtk, finding

ψ
(2)
2 (t ) ∼

t→∞ − χ2D2
0h2

T ω2
0rd/2

1

t d/2

∫ ∞

0
dq qd−1e−q2

= −χ2�(d/2)

2

D2
0h2

T ω2
0rd/2

1

t d/2
. (69)

For ρ = 2 (model B) and m > 0, using q = m
√

rtk leads to

ψ
(2)
2 (t ) ∼

t→∞ − χ2D2
0h2

T ω2
0m4+d r (d+2)/2

1

t (d+2)/2

∫ ∞

0
dq qd+1e−q2

= −χ2�(1 + d/2)

2

D2
0h2

T ω2
0m4+d r (d+2)/2

1

t (d+2)/2
. (70)

If, instead, for the same value of ρ = 2 one consider the
critical case m = 0, then we define q = (rt )1/4k and get

ψ
(2)
2 (t ) ∼

t→∞ − χ2D2
0h2

T ω2
0rd/4

1

t d/4

∫ ∞

0
dq qd−1e−q2

= −χ2�(d/2)

2

χ2D2
0h2

T ω2
0rd/4

1

t d/4
. (71)

Note that the correlations for model B (ρ = 2) have already
been obtained in Ref. [18].

Concerning the excess kurtosis in Eq. (46), the same ma-
nipulations as above yield

γ (t ) � χ4D2
0

16ω0T

∫ ∞

0
dk

kd+3K̃2

Ã

∫ t

0
ds e−2ω0(t−s)

× [sinh(ω0[t − s]) + ω0(t − s)]e−R̃Ãs−k2σ 2
0 (s)/2,

� 7χ4D2
0

192ω2
0T

∫ ∞

0
dk

kd+3K̃2

Ã
e−k2D0/ω0−R̃Ãt . (72)

From this expression, we obtain that the excess kurtosis γ (t )
for ρ = 0 (model A) decays exponentially with rate rm2

on increasing t if m > 0. If, instead, m = 0, then it decays

algebraically as

γ (t ) ∼
t→∞

7χ4D2
0h2

192ω2
0Tr (d+2)/2

1

t (d+2)/2

∫ ∞

0
dq qd+1e−q2

= 7χ4�(1 + d/2)

384

D2
0h2

ω2
0Tr (d+2)/2

1

t (d+2)/2
. (73)

For ρ = 2 (model B), one gets a generic algebraic decay in
the noncritical case m > 0, i.e.,

γ (t ) ∼
t→∞

7χ4D2
0h2

192ω2
0T m6+d r (d+4)/2

1

t (d+4)/2

∫ ∞

0
dq qd+3e−q2

= 7χ4�(2 + d/2)

384

D2
0h2

ω2
0T m6+d r (d+4)/2

1

t (d+4)/2
, (74)

which changes, for the critical case m = 0, into

γ (t ) ∼
t→∞

7χ4D2
0h2

192ω2
0Tr (d+2)/4

1

t (d+2)/4

∫ ∞

0
dq qd+1e−q2

= 7χ4�(1 + d/2)

384

D2
0h2

ω2
0Tr (d+2)/4

1

t (d+2)/4
. (75)

The various behaviors of the excess kurtosis γ (t ) at long times
t in the presence of a trap are summarized in Table II.

In all cases discussed above and summarized in the table,
the decay of γ (t ) on increasing t in the presence of a trap is
faster than without it. In the absence of a trap, γ (t ) for critical
model A in d < 2 actually grows in time (see Table II and
Fig. 3). This growth occurs within the range of validity of our
perturbation theory. Note that the prefactors of the asymptotic
expressions of γ (t ) in the presence of a trap depend on D0

and ω0 only via their ratio D0/ω0 = T/κ . This means that the
mobility γ −1 of the probe, which enters both D0 and ω0, plays
no role. As for the correlation functions studied in Ref. [18],
the long-time algebraic decay in the presence of a trap reflects
the dynamics of the field and not an interplay between the
dynamics of the probe and that of the field itself. Conversely,
the algebraic decay of the excess kurtosis without the trap
involves the interplay between the dynamics of the probe and
that of the field.

C. Comparison with the numerical integration

Figure 3 shows the perturbative analytical predictions for
the evolution of the excess kurtosis γ (t ) with (red lines) and
without (blue lines) trap obtained by the numerical integration
of Eqs. (46) and (53), respectively, for model A. The various
parameters of the model used for the calculation are h = 1,
D0 = 1, a = 1, T = 1, d = 1 (upper panels) or 3 (lower
panels) and m = 0 (left panels) or 1 (right panels). These
predictions are compared with the corresponding short- and
long-time behaviors derived in Secs. V A and V B (see also
Table II), which turn out to provide excellent approximations.

VI. CONCLUSION AND PERSPECTIVES

In this work, we have computed perturbatively the second-
and fourth-order moments of the displacement of a probe par-
ticle coupled to a Gaussian field and held in a harmonic trap.
Our analytical predictions are in good agreement with the re-
sults of numerical simulations in which the field is represented
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FIG. 3. Perturbative prediction of the dependence of the excess kurtosis γ (t ) on time t in the presence (red, with ω0 = 10−2) or in the
absence (blue) of a trap, obtained from the numerical integration of Eqs. (46) and (53), respectively. In particular, we consider the case of the
field with model A dynamics in spatial dimensions d = 1 (upper panels) and 3 (lower panels), either noncritical (m = 1, left panels) or critical
(m = 0, right panels). The dotted lines show the short-time behavior of γ (t ) [see Eq. (58)], the dash-dotted line corresponds to the possibly
algebraic long-time behavior in the presence of a trap, while the dashed line corresponds to the same limit but in the absence of a trap, see also
Table II.

by a finite number of Fourier modes. We have shown that
the excess kurtosis γ (t )—which characterizes the effective
nonlinearity of the probe dynamics—is positive, vanishes at
short times, increases on increasing time, reaches a maximum
and then it generically decreases, vanishing asymptotically at
long times. This means that the displacement of the probe is
Gaussian at short and long times, while its distribution devi-
ates from a Gaussian at intermediate times, similarly to what
is observed for a colloid in suspensions of swimming algae
[29] or bacteria [30]. In the absence of the trap and in a critical
field in spatial dimension d < 2, instead, γ (t ) monotonically
increases on increasing the time t , at least within the range
of validity of the perturbative approach used here. The time
at which the kurtosis reaches its maximum is heuristically
expected to be the typical timescale of the probe-field inter-
action. We have then investigated the long-time asymptotic
behavior of the excess kurtosis γ (t ), summarized in Table II.
It turns out that when the probe is held in a harmonic trap,
its dynamics reflects that of the slow modes of the field. In
contrast, when the probe is free to diffuse, the possible decay
of the excess kurtosis on increasing time is slower than in the
presence of the trap and depends on the coupled dynamics of
the probe and the field.

Together with the effective memory kernel of a con-
fined probe [18], our predictions concerning the behavior
of the excess kurtosis may also shed light on the problem
of the dynamics of a probe in a viscoelastic fluid, which
has been recently the subject of theoretical and experimental
investigations [8,9]. At first sight, the coupling to a Gaussian
field considered in this work seems too simplistic to be able to

provide a quantitative description of the dynamics of the probe
in such a complex fluid. However, recent works [8,9] have
shown that this dynamics is actually described, quantitatively
and at least in some cases, by a model in which the probe is
coupled to one or more virtual “bath particles” via harmonic
springs of stiffnesses κi. Such a model is linear and therefore
the dynamics of the bath particles can be determined analyt-
ically and inserted in the equation of motion of the probe,
which eventually takes the form of a GLE. The resulting
memory kernel is given by �(t ) = ∑

i κi exp(−ωit ), where ωi

is the relaxation rate of the ith bath particle in the potential
determined by the spring.

With the model studied here, by contrast, the dynamics of
the probe resulting from the coupling to the Gaussian field is
non-Markovian and nonlinear. By linearizing this dynamics,
one finds a GLE with the same memory kernel as the bath
particles model for viscoelasticity, where the sum over the
bath particles is replaced by a sum over the Fourier modes of
the Gaussian field, as discussed in Sec. 3.2 of Ref. [18]. The
contribution of the mode k to the effective dynamics of the
probe is characterized by the coupling strength κk and by the
relaxation rate ωk . Contrary to the bath particles model, the
Gaussian field model discussed here encompasses nonlinear
effects: They arise from the coupling to the mode k if the
displacement of the probe exceeds k−1 over the timescale ω−1

k
(see Sec. 3.2 of Ref. [18]). The Gaussian field model is thus
a straightforward generalization of the linear bath particles
model, with an additional parameter for each mode, i.e., k,
which sets the threshold for the appearance of nonlinear ef-
fects. These additional parameters can be used in order to
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provide a description of the dynamics of a probe in a complex,
e.g., viscoelastic, medium in terms of the Gaussian field model
studied here [Eqs. (1) and (3)] with a suitable choice of the
operators A, K , and R.

In particular, one could first adjust the parameters κi and
ωi of the bath particles model when the probe dynamics re-
mains linear. Then, experiments which detect and highlight
nonlinear effects can be used in order to guide the choice of
the additional parameter k of the Gaussian field model for
each mode. Measurements of the two-time correlation of the
position of the probe in the trap have revealed the confinement
dependence of the effective memory kernel, which is one of

such nonlinear effects. Other possible experiments consist in
moving the confining potential with a finite velocity [26] or,
as suggested here, to measure the kurtosis of the displacement
of the probe.

ACKNOWLEDGMENTS

We thank U. Basu for useful discussions and contributions
in the early stages of this work. A.G. acknowledges sup-
port from MIUR PRIN project “Coarse-grained description
for nonequilibrium systems and transport phenomena (CO-
NEST),” Grant No. 201798CZL.

APPENDIX: SIMPLIFICATION OF THE CUMULANT GENERATING FUNCTION

Here we simplify the correction ψ2 to the cumulant generating function, reported in Eq. (32). Changing variable to s =
t ′ − t ′′ > 0, it reads

ψ2(q, t ) = − 1

γ

∫
dk

(2π)d

K̃2

Ã
(k · q)

∫
dt ′[R(t − t ′) − R(−t ′)]

∫ ∞

0
ds e−R̃Ãs− k2

2 σ 2
0 (s)−k·qS(t,t ′,t ′−s)

× {R̃Ã + D0[k · q[R(t − t ′ + s) − R(s − t ′)] + k2R(s)]}. (A1)

Introducing the argument of the exponential [for simplicity we do not write all the arguments of f (s)],

f (s) = R̃Ãs + k2

2
σ 2

0 (s) + k · qS (t, t ′, t ′ − s), (A2)

the derivative of which is

f ′(s) = R̃Ã + D0{k2R(s) + k · q[R(t − t ′ + s) − R(s − t ′) + R(t ′ − s)]}, (A3)

we can write the correction as

ψ2(q, t ) = − 1

γ

∫
dk

(2π)d

K̃2

Ã
(k · q)

∫
dt ′[R(t − t ′) − R(−t ′)]

∫ ∞

0
ds e− f (s)[ f ′(s) − D0 k · qR(t ′ − s)]. (A4)

Since f (0) = 0 and lims→∞ f (s) = ∞,
∫ ∞

0 ds e− f (s) f ′(s) = 1; then we use that
∫

dt ′[R(t − t ′) − R(−t ′)] = 0. We arrive at

ψ2(q, t ) = D2
0

T

∫
dk

(2π)d

K̃2

Ã
(k · q)2

∫ ∞

0
ds

∫
dt ′e− f (s)[R(t − t ′) − R(−t ′)]R(t ′ − s) (A5)

= D2
0

T

∫
dk

(2π)d

K̃2

Ã
(k · q)2

∫ t

0
ds

∫ t

s
dt ′e− f (s)e−ω0(t−s) (A6)

= D2
0

T
e−ω0t

∫
dk

(2π)d

K̃2

Ã
(k · q)2

∫ t

0
dse(ω0−R̃Ã)s−k2σ 2

0 (s)/2
∫ t

s
dt ′e−k·qS(t,t ′,t ′−s). (A7)

In the exponent,

S (t, t ′, t ′ − s) = D0

ω0
[R(t − t ′) − R(t − t ′ + s) − R(t ′) + R(t ′ − s)], (A8)

= D0

ω0
[e−ω0(t−t ′ ) − e−ω0(t−t ′+s) − e−ω0t ′ + e−ω0(t ′−s)], (A9)

= 4D0

ω0
e−ω0t/2 sinh

(
ω0s

2

)
cosh(ω0u), (A10)

where u = t ′ − (t + s)/2. The integral over t ′ becomes∫ t

s
dt ′ e−k·qS(t,t ′,t ′−s) = 2

ω0
J0

(
4D0

ω0
k · q e−ω0t/2 sinh

(
ω0s

2

)
,
ω0(t − s)

2

)
, (A11)

where J0 is the lower-incomplete form of the modified Bessel function of the second kind reported in Eq. (34). Finally, by using
the invariance of ψ (q, t ) under spatial rotations of q, we can write the full correction as in Eq. (33).
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