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Although thin films are typically manufactured in planar sheets or rolls, they are often
forced into three-dimensional (3D) shapes, producing a plethora of structures across
multiple length scales. To understand this complex response, previous studies have
either focused on the overall gross shape or the small-scale buckling that decorates it.
A geometric model, which considers the sheet as inextensible yet free to compress, has
been shown to capture the gross shape of the sheet. However, the precise meaning
of such predictions, and how the gross shape constrains the fine features, remains
unclear. Here, we study a thin-membraned balloon as a prototypical system that
involves a doubly curved gross shape with large amplitude undulations. By probing its
side profiles and horizontal cross-sections, we discover that the mean behavior of the
film is the physical observable that is predicted by the geometric model, even when
the buckled structures atop it are large. We then propose a minimal model for the
horizontal cross-sections of the balloon, as independent elastic filaments subjected to
an effective pinning potential around the mean shape. Despite the simplicity of our
model, it reproduces a broad range of phenomena seen in the experiments, from how
the morphology changes with pressure to the detailed shape of the wrinkles and folds.
Our results establish a route to combine global and local features consistently over an
enclosed surface, which could aid the design of inflatable structures, or provide insight
into biological patterns.

elastic sheets | inflated surfaces | water balloons | wrinkle-fold transition | gross shape

Complex patterns of wrinkles, crumples, and folds can arise when a thin solid film
is stretched (1–3), compacted (4–7), stamped (8–10), or twisted (11–13). These
microstructures arise to solve a geometric problem: they take up excess length at a small
scale to facilitate changes in length imposed at a larger scale, by boundary conditions at
the edges or by an imposed metric in the bulk. When the confining potential is sufficiently
soft, like that presented by a liquid, the sheet can have significant freedom to select the
overall response that the small-scale features decorate (11, 14–21). Understanding how
gross and fine structures are linked, especially in situations with large curvatures and
compression, remains a frontier in the mechanics and geometry of thin films.

To date, the dominant approach has been to treat gross and fine structures separately.
For example, tension-field theory (22) accounts for the mechanical effect of wrinkling
on the stress and strain fields, while ignoring the detailed deformations at the scale of
individual buckles. Recent work (3) has established how to calculate the energetically
favored wrinkle wavelength anywhere within a buckled region. But owing to geometric
nonlinearities, these approaches have been limited to situations with small slopes and
a high degree of symmetry, and they assume small-amplitude sinusoidal wrinkles at
the outset. A geometric model was recently developed (17, 23) for situations where
energy external to the sheet—like a liquid surface tension or gravity—ultimately selects
the gross shape. Although this model can address situations with arbitrary slopes, it is
typically agnostic to the exact form of the fine structures. Moreover, it is unclear what
surface the geometric model precisely predicts in the presence of finite amplitude wrinkles
or folds.

At the small scale, significant progress has been made on understanding oscillating
buckled features by analyzing an inextensible rod attached to a fluid or solid foundation
(2, 24). This approach can predict the energetically favored wavelength of monochromatic
wrinkles, but much less is known about the selection of more complex or evolving
microstructures. Morphological transitions, like the formation of localized folds, have
been largely analyzed on planar substrates (25–28), and it is not known how they are
modified when the gross shape is curved and can freely deform (14).

Here, we elucidate the interplay of the gross and fine structures of a strongly deformed
thin sheet by studying a water balloon made by thin membranes that strongly resist
stretching (Fig. 1). We obtain a wide range of deformations by varying the internal air
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Fig. 1. (A) We make partially filled water balloons by sealing two circular
sheets of radius rdisk that bend easily but strongly resist stretching. We vary
the air pressure inside the balloon, which we measure using the height h
of a water column in a U-shaped tube. We use cylindrical coordinates (r, z),
and we denote the arclength from the top of the balloon as ls. (B) Side-
view photograph of the setup with water volume Vwater = 277.9 mL and air
pressure p = 276 Pa.

pressure and the volume of liquid in the balloon. Despite
the complex surface arrangements, a simple geometric model
omitting the bending cost captures the mean shape, which we
define as the azimuthal average over the small-scale wrinkles
and folds. The observed side-view profile of a balloon (Figs. 1B
and 2), on the other hand, may differ from the mean shape
due to surface fluctuations. We show how the finite wrinkle
amplitude can be accounted for and combined with the mean
behavior to predict the outer envelope of the wrinkled balloon,
in agreement with our experiments. To understand the buckled
microstructure in more detail, we model a horizontal cross-
section of the balloon as an effective filament pinned to the
prediction of the geometric model. Remarkably, our parsimo-
nious model quantitatively captures the fine structures of the
balloon, while retaining the agreement between the mean shape
and the prediction of the geometric model. We measure the
size of the self-contacting loops at the tips of the folds that
form at high pressures (Fig. 5A), which further supports our
treatment of the horizontal cross-sections as elastic filaments.
These results provide a paradigmatic example of how to analyze
gross shape and fine structures in a unified approach, for strongly
curved sheets.

1. Experimental Setup

We construct closed membranes by sealing together disks of
initially planar plastic sheets of radius rdisk = 83 mm (Fig. 1).
The material outside the seal is then trimmed off, and a nylon
washer of radius rtop = 8 mm is glued to the center of the top
layer for hanging the bag and connecting a tube that can supply
air and water into the bag. The same tube is connected to a
custom manometer made from two plastic cylinders connected
by a U-shaped tube; the difference in water height h allows us to
measure the overpressure via the hydrostatic pressure difference
p = ρgh (Fig. 1A). Once inflated, the balloon transforms from a
flat initial state to a strongly curved global shape with a complex
arrangement of surface structures (Fig. 1B).

2. Geometric Model for Gross Shape

To capture the side-view profiles of the balloons, we use a simple
geometric model (17, 23, 29) that idealizes the balloon as a
smooth, axisymmetric surface r(z) with no surface fluctuations
(Fig. 1A). This effective surface is free to bend, inextensible, and
free to compress, as compressional stresses are readily relieved by
wrinkles and folds. This model is termed “geometric” because
it does not involve the elastic moduli of the sheet. Assuming
the entire balloon is wrinkled so that the circumferential tension
vanishes everywhere, tangential force balance implies that the
physical longitudinal stress in the balloon follows Ts = f /ls,
where f is a constant with the dimension of force, and ls the
meridian arc-length from the top center to the point in question
(Fig. 1A) (22, 30–34). The effective surface carries an effective
longitudinal stress Teff which is related to the physical stress
through the ratio of the physical to the effective arclengths:

Teff =
ls
r
Ts =

f
r
. [1]

Normal force balance relates this longitudinal tension to the
curvature of the surface κ in the longitudinal direction and the
local pressure drop across the membrane: κTeff = 1p. Denoting
derivatives with respect to z as primes, the longitudinal curvature
is given by κ = −r′′/(1 + r′2)3/2. Setting z = 0 as the water
level, the local pressure drop is given by p for z > 0 and p− ρgz
for z < 0. Using Eq. 1, the normal force balance thus reads

A B C D E

Fig. 2. (A–D) Side-view photographs of a balloon filled with Vwater = 100.4 mL of water at various internal pressures from p = 128 Pa to 0 Pa. Image grayscale
inverted for clarity. Green curves: Predictions from the geometric model, Eqs. ?? at the corresponding pressures with no free parameters. The agreement is
very good at high pressures, but there is a significant discrepancy at p = 0. (E) Pink curve: Adding the amplitude of the wrinkled envelope, Eq. 2 to the geometric
model gives good agreement with the side-view profile of panel (D).
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A B C

Fig. 3. Cross-section model captures the morphological features of the balloon cross-sections. (A) Horizontal cross-section shapes measured by scattering a
sheet of laser light at a fixed distance ztop − z = 39.4 mm below the top of a balloon with Vwater = 100.0 mL, which is gradually deflating from p = 278 Pa to 0
Pa. The photographs are tinted and superimposed to compare the different morphologies. (B) Shapes from the cross-section model. All physical parameters
(pressure, bending modulus, length of cross-sections, volume of water) were set to match the conditions in panel (A), and a single � = 15 in Eq. 4 was selected
by matching the wavenumber with experiment at high pressures. (C) The average distance of a cross-section to its centroid, rmean, versus the prediction of the
geometric model, rgm, in the same z−plane. The data span various cross-sections in different balloons made by produce bags (markers with black edges) or food
wrap. Blue markers: experimental measurements. Red markers: cross-section model. Filled markers: p = 0. Open markers: p > 0. Inset: wavenumber q versus
pressure, showing that the cross-section model captures the wrinkle-fold transition. (D) The average fractional protrusion of a cross-section, dmean/rmean,
versus pressure. The cross-section model reproduces the trend in the experiments, where the data decay quickly upon inflation. This trend explains how the
geometric model can match the side-view profiles at high pressures (Fig. 2 A–C).

−
fr′′

r(1 + r′2)3/2 =
{
p 0 < z < ztop [2a]
p− ρgz zbot < z < 0. [2b]

We denote ztop, zbot as the top and bottom coordinates of
the balloon. Eq. [2] are then two second-order ODE’s with three
parameters f , ztop and zbot unknown a priori and hence should be
supplemented with seven boundary conditions: r(0+) = r(0−)
and r′(0+) = r′(0−) at the water level, r(ztop) = rtop,
r(zbot) = 0 and r′(zbot) → ∞ at the top and the bottom of
the balloon, together with the sheet inextensibility constraint
rtop +

∫ ztop
zbot

√
1 + r′2dz = 2rdisk and a prescribed water volume∫ 0

zbot
πr2dz = Vwater.

Eq. [2] are integrated numerically using the explicit Runge–
Kutta method of order 5 implemented in the function solve_ivp
of the package integrate in SciPy (35, 36). The solutions, which
we denote as rgm(z), are plotted in Fig. 2 over the corresponding
images. This comparison is done with no free parameters. There
is an excellent agreement between the numerical predictions and
the apparent shape of the balloon at high pressure, despite the
complex surface arrangements. However, the agreement is poor
at low pressure, as shown by the p = 0 case in Fig. 2D. To
understand this apparent discrepancy at low air pressures, we
turn to the investigation of the fine structure of the balloon.

3. Cross-Sections

We obtain horizontal cross-sections of a balloon at a fixed vertical
distance from the top by scattering a sheet of laser light into the
system. These cross-sections are then colorized and superimposed
to highlight the morphological change as a function of pressure
(Fig. 3A). The image shows a transition in the fine structure,
starting from folds at large pressure to wrinkles at lower pressure,
with an increase of the wavenumber.

For each contour, we identify the center of the balloon with
the centroid of the contour, and then measure rmean: the mean
distance between the contour and the center of the balloon.
Fig. 3C compares the measured rmean versus the prediction of the
geometric model rgm in the same plane. The agreement shows that
the geometric model accurately predicts the mean shape of the
balloon surface. This agreement is robust; the data include cross-
sections at multiple vertical locations in the deflated balloon,
and different pressures in the inflated balloons, and we have also
varied the membrane material and water volume.

To quantify the difference between the mean shape of the
balloon and the apparent profile, we measure the average
protrusion dmean of each cross-section, which we define to be the
average amplitude of the local maxima of each contour. Fig. 3D
shows that dmean decays rapidly with increasing pressure. Taken
together, the results in Fig. 3 C and D resolve the apparent
discrepancy at low pressure between the geometric model and
the side-view profiles in Fig. 2. Namely, the side-view profile
is given by the mean shape plus the amplitude of the wrinkly
undulations, rgm + dmean. Fig. 3D shows that these undulations
can be rather large at zero pressure—more than 10% of the
mean—but they become much smaller when there is an internal
pressure. To quantify the deviation dmean, and understand how it
arises from the particular curve shapes, we now study the p = 0
case in more detail.

4. Wrinkle Shape at Zero Pressure

Horizontal cross-sections of a deflated water balloon measured
at equal vertical intervals above the seam are shown in Fig. 4A.
Noting that the apparent profile of the top half of the balloon
looks to be conical, we extrapolate an apex of the apparent profile
from the side-view image. We then rescale the cross-sections by
the distance to this apex. This simple rescaling nearly collapses
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CA B

Fig. 4. Horizontal cross-sections in a deflated balloon exhibit a generalized conical structure. (A) Cross-section curves extracted from an balloon with Vwater =
112.9 mL at p = 0, at 10 different heights. The contour is traced and plotted as a line for clarity. (B) Cross-sections rescaled by the distance to the extrapolated
apex of the conical profile (this distance is denoted in the colorbar). This operation nearly collapses the rescaled shapes, indicating a generalized cone structure
of the balloon structure. (C) Inset: the average protrusion, dmean, of the cross-sections versus ��s from experiments (blue) and the cross-section model (red).
Units are mm; legend in Fig. 3C. The trend is approximately linear. Main: to examine these data in more detail, we plot dmean/(��s) versus the effective strain
�, for various balloons at p = 0 from both the experimental measurements and the numerical predictions of the cross-section model. For comparison, we plot
the exact relations for a sine wave, square wave, and Euler’s Elastica, where in each case the amplitude is controlled by �. The Elastica shows the best agreement
with the data.

all the cross-sections (Fig. 4B), indicating that not only the gross
shape but also the fine structure has the shape of a generalized
cone.

A consequence of a conical structure is that the wrinkle
wavenumber does not vary significantly with height z. To
understand this observation, we assume that the selection of
the wavelength is dominated by the tensional substrate stiffness
(2), so that the wavelength scales as λ ∼ (B/Ts)1/4r1/2

disk. If the
wavenumber was to change with the height, the associated length
scale ` would scale as ` ∼ λ2

√
Ts/B (37). Taken together,

` ∼ rdisk, which explains the invariance of the wavenumber
within the size of the balloon.

To study the shape of the individual cross-sections, we investi-
gate the relations among the observables of the mean maximum
amplitude dmean, the wrinkle wavelength, and how much the
cross-section is compressed. We define the material wavelength
λs ≡ 2π ls/q, which divides the total arclength of the cross-
section by the number of undulations q, which we measure by
counting peaks. We quantify the amount of compression by the
effective strain ε ≡ (ls − rmean)/ls (to be contrasted with the
local material strain, which is vanishingly small for our buckled
films). Note that λs approaches the “usual wavelength”, λ, when
ε approaches 0. The particular shape of the undulations tells
how dmean, λs, and ε are related. For example, small-amplitude
sinusoidal waves obey dmean ∝

√
ελs and for square waves

dmean = ελs/4. To examine the relation in our system, we plot
dmean versus ελs in the inset to Fig. 4C . Remarkably, the data
collapse onto a line that is fit well by:

dmean ≈ βελs, [2]

where β is the linear coefficient with a best-fit value of 0.30.
The simple relation of Eq. 2 shows how to readily estimate the

amplitude of wrinkles dmean as a function of z. Given a volume
of water, a washer radius, and a bag size, one may compute the
arclength ls(z) and the mean shape rmean(z) ≈ rgm(z) with the
geometric model. The crucial ingredient from the experiment is
the observed wavenumber q (which is approximately independent
of z). With just these parameters, one may then obtain ε(z) and

λs(z), which combine via Eq. 2 to give dmean(z). This wrinkled
envelope can be added to the mean shape to yield a predicted
apparent shape. We do this in Fig. 2E ; the result matches the
experimental profile very well, especially when compared to the
geometric model without the wrinkled envelope for the same
balloon, in Fig. 2D. The correction continues to be favorable
past the seam through the bottom of the balloon, which offers an
explanation for the kink in the apparent profile at the location
of the seam where the two disks are heat-sealed together. One
might expect this kink is due to the larger rigidity of the heat-
sealed seam. Instead, it arises from the triangular peak in the
amount of material to be packed into the confined mean shape,
since the excess length as a function of z grows linearly up to the
location seam, and then falls linearly past the seam. Thus, it is a
geometric and not a mechanical effect.

To examine the curves in more detail, we plot the ratio
dmean/ελs as a function of ε in Fig. 4C . For comparison, we
show the curves for sinusoidal waves, square waves, and the
inflexional Elastica (38). The data are close to the trend for the
Elastica—local minimizers of the integrated squared curvature,
which capture the bending mechanics of an inextensible rod in
equilibrium. This behavior is expected for confined isometric
surfaces (39); in our case, the presence of tension along the
wrinkles may introduce deviation to pure Elastica, as we
will see.

Our detailed analyses of the cross-sections have two main
conclusions: First, in contrast to hierarchical wrinkling such as
in a suspended curtain (37, 40), here the cross-section shape is
approximately independent of z (Fig. 4B). Second, the shared
properties of the cross-sections with Elastica points to the
relevance of a minimization of the bending energy within a cross-
section. These findings motivate a quasi-two-dimensional model
for a typical cross-section, which is representative of all the others
in a given configuration of the balloon.

5. Quasi-Two-Dimensional Model

We model a cross-section of the balloon at ls as an inextensible
filament of total length L = 2π ls. For a filament with a two-
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dimensional, arc-length parametrized configuration r(s), the
bending energy is

Ub =
B
2

∫
r′′(s)2ds, [3]

where B is the bending rigidity.
Inspired by the “elastic foundation” effect induced by a

longitudinal tension (2), we introduce a confinement energy

Ut =
ηTs

2r2
disk

∫
[r(s)− rid(s)]2ds, [4]

penalizing deviations of the filament from an ideal configuration
rid(s) = rconf · (cos(s/L), sin(s/L)). Here, rconf is a parameter to
be determined by the solution of the geometric model. Crucially,
we further incorporate the finite slope effect by penalizing both
the radial and azimuthal deviations in the integrand of Eq. 4,
without which the system configuration r(s) would have favored a
single deep fold (27, 41). To account for the doubly curved profile
and the boundary connecting to the balloon membrane below
the water level, we introduce a dimensionless factor η. To retain
the predictive power, we set η to be a fixed numerical parameter
independent of p, to be determined a posteriori by matching the
configuration wavenumber q produced by the model with the
experimental observation.

So far the model is for p = 0, but pressure can be incorporated
by considering the work that it does on the filament. This work
is p multiplied by the enclosed area, which reads:

Up = −
p
2

∫
r(s)× r′(s)ds. [5]

The total energy associated with the model cross-section is then

Utot[r(s)] = Ub + Up + Ut. [6]

In computing Ut, the parameter rconf is specified by requiring
the case of an inextensible balloon membrane with zero bending
rigidity to recover the prediction of the geometric model.
Accordingly, for the representative filament with bending rigidity
B = 0, r(s) should approach a circle of radius rgm with
arbitrarily small and dense oscillations. The total energy becomes
limB→0 Utot(r) = (ηTs)/(2r2

disk)(r−rconf)2L−πpr2 and should
take its minimum at r = rgm. Setting ∂r limB→0 Utot|rgm = 0
gives

rconf = rgm

(
1−

1
η

pr2
disk
Tsls

)
. [7]

In this flexible membrane limit, the balloon assumes a radius of
rconf at p = 0, while for p > 0 the pressure term Up displaces the
balloon radius to rgm.

We are interested in finding the configuration r(s) that
minimizes the total energy δUtot[r(s)] = 0. To realize the
energy minimization, we derive the corresponding force f tot(s) =
−δUtot/δr(s) and evolve the configuration using the dynamics
of an over-damped system ∂tr(s) = f tot(s) to equilibrium.
An “inextensibility force” is added to preserve the filament
length L (42), as is a self-repulsion force against self-crossing
(SI Appendix).

Fig. 3B shows the predictions of the filament model at various
pressures. Qualitatively, the numerical configurations capture the
lobe formation at high pressure, the rounded wrinkle shape at

low pressure, and a wrinkle-fold transition with wavenumber
proliferation at intermediate pressure. For each configuration,
the mean radius rmean, similarly defined as in the experimental
measurements, is computed and plotted in Fig. 3C as the red
markers. The numerical minimization reproduces quantitatively
that the mean radius of the filament is close to the prediction of
the geometric model. Similarly, the mean amplitude dmean of the
filament protrusions is extracted and a quick decay over increasing
pressure is manifest as shown in Fig. 3D. For all pressures, the
wavenumber produced by the filament model increases with an
increasing numerical coefficient η in Eq. 4. Nonetheless, the
threshold pressure for the wrinkle-fold transition is insensitive to
our choice of η (SI Appendix). Selecting an appropriate value of η
allows us to match the entire q(p) curve obtained in experiments,
shown in the inset of Fig. 3C .

For the special case of p = 0, we extract dmean/ελs and ε
from the model filaments, which we may compare with the
experimental data in Fig. 4C . Although the numerical results
are broadly consistent with the experiments, there is a small but
noticeable deviation from the Elastica curve. Such distinction
is irresolvable experimentally due to system noise, yet shall be
expected from the longitudinal tension along the conical shape.

6. Shape of Deep Folds

We have seen that the minimal physical ingredients to reproduce
the cross-section morphology are the effects of pressure, the
bending energy within a cross-section, and an effective pinning
potential that captures the coupling of cross-sections to the
prediction of the geometric model. To further check the validity
of this two-dimensional model, we turn to study the shape of
individual folds at large pressure. At the tip of each fold, the
membrane curves around sharply, shown in the cross-section as
a small loop (Fig. 5A). We observe that the size and shape of the
folds can vary between different folds at different pressures. To
see whether there is a commonality among the folds, we scale and
superimpose the loops onto each other by adding the brightness
values of the photos. Remarkably, a master shape appears, as
shown in Fig. 5B. The emergence of a common shape upon the
scaling of the images suggests the existence of a mathematical
similarity solution of the loop profile.

We notice that at high pressure, the loops become small with
large curvature so that the total energy Eq.6 of our model filament
is dominated by the bending term Ub and the pressure term Up.
Minimizing Ub + Up (neglecting the pinning potential Ut), we
obtain a differential equation for the loop shape (SI Appendix,
43, 44). We solve this equation numerically and plot the result
as a solid curve on Fig. 5B, which is in excellent agreement with
the composite experimental image. While qualitatively similar to
loops in clamped elastica (45, 46), this precise shape results from
a balance between bending and pressure.

Having settled the shape of the loops, we now investigate their
size. Intuitively, we expect a balance between the bending and
pressure effects to determine their width, leading to

wloop = ξ

(
B
p

)1/3
. [8]

This scaling also arises for ridges in depressurized shells on
mandrels (47), and this result is supported by the full analysis of
the filament model (SI Appendix), which further gives the value
of the prefactor, ξ = 1.065. We measure the width of many
loops at two different cross-section heights and at multiple values
of air pressure. The blue symbols in Fig. 5C show the results,
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B CA

Fig. 5. Loops at the tips of folds at high pressure. (A) Self-contacting folds
form in a pressurized balloon, imaged in a horizontal cross-section produced
by laser scattering. Arrows indicate the location of folds. Each fold forms a
small loop at its tip. (B) Superposition of 25 rescaled laser-scattering images
of fold tips at various pressures, with Vwater = 103.5 mL. Black curve: exact
similarity solution in the high-pressure limit. (C) The loop width, wloop, versus
p. The data are an average of multiple loops at a given pressure; error bars
show the variation in the observed loop size, quantified by the SD over the
mean of the measurements. Experimental measurements at two different
heights give consistent results. Results from the cross-section model (red
markers) in the same conditions agree well with the experiments. Line: Exact
model prediction in the high-pressure limit, using the value of B = 1.58×10−8

J that we measured (text).

where the error bars are computed as the SD of the mean. The
data at two different z-positions, represented by two different
shades of blue, fall on top of one another, once again supporting
the local treatment of the cross-section model. All the data are
in good agreement with the predicted scaling of Eq. 8 with
pressure.

As a more stringent test, we may compare Eq. 8 directly with
the data, by using a value of B = (1.58± 0.06)× 10−8 J for the
balloon material, which we obtained by measuring the Young’s
modulus E using a tensile tester, and using B = Et3/[12(1−ν2)]
with ν = 0.4 (SI Appendix). The prediction is in good agreement
with the data (solid line in Fig. 5C ). Conversely, one can use a
power-law fit to the data to measure the bending modulus of the
film. For our data, this yields a value of B = (1.44 ± 0.15) ×
10−8 J, which is a surprisingly accurate measurement.

Finally, we compare our results with the cross-section model,
which incorporates the confinement term Ut in Eq. 6. We
generate cross-sections at multiple pressures and measure the
width of the loops. The result, shown by the red markers in
Fig. 5C , agrees well with the experiments.

7. Discussion

We have probed the gross shape, the fine structure, and the
interplay between them in a balloon made of two flat elastic
disks sealed at the edge, partly filled with water and pressurized.
We have considered the geometric model that treats the sheet
as inextensible yet free to compress, due to a vanishing bending
modulus that allows for the formation of buckled fine structures
at negligible energetic cost. We found that this model predicts
the “mean shape” of the sheet, defined as the mean radius of the
cross-sections. We have then shown that the undulations of
the cross-sections around the mean shape are well-described by
a phenomenological model that accounts for the resistance to
bending, the effect of pressure, and a pinning to the mean shape.
In particular, this model captures the transition between wrinkles
resembling the Elastica at zero pressure to folds with a rounded
tip when pressure is applied.

A wrinkle-fold transition is usually associated with the global
compression exceeding a finite threshold value (28, 41). This
threshold is predicted to be of the same scale of the wrinkle

wavelength (25), so that wrinkles typically become unstable
to forming a fold at small slopes. Here, at zero pressure, we
observe wrinkles that are stable up to large slopes, and at a global
compression that is much larger than the wavelength. Notably,
in our system, the transition to folding occurs as the azimuthal
compression decreases, signaling a different mechanism than the
well-studied wrinkle-fold transition that is driven by a growing
wrinkle amplitude. Indeed, the transition to folds that we observe
is due to the internal pressure that deforms the wrinkles, leading to
self-contact. The ability of wrinkles to survive at large amplitude
is rooted in the restoring force when the cross-section deviates
from its ideal position, which has components both in the radial
and angular directions.

There is another known class of wrinkle-fold transitions with a
distinct geometric mechanism. In some settings, the energetically
favored gross shape may break axisymmetry in such a way where
some of the excess length must be stored locally. This scenario
may be compatible with the formation of localized deep folds
but not with regular wrinkles (17, 48). Our results show that
a pressurized water balloon does not fall into this class: both
wrinkles and folds serve to waste excess material length along
an axisymmetric gross shape. Hence, our system displays an
intriguing type of wrinkle-fold transition where wrinkles are
stabilized by an isotropic tension term but destabilized by the
internal pressure.

More generally, our results raise fundamental questions about
the nature of convergence toward the shape predicted by the
geometric model. The geometric model predicts the limiting
shape of the sheet as the bending modulus B vanishes. This
limiting shape has a compressive strain, which corresponds to
infinitesimal undulations of the actual sheet around its mean
shape (49). Previous works, which have focused on nearly planar
shapes with small effective compressive strain have suggested that
these undulations usually take the form of sinusoidal wrinkles (3,
34). Our observations show that, when the effective compressive
strain is large, the undulations could also take the form of deep
folds. Beyond the shape of the undulations, the convergence
toward the prediction of the geometric model can be quantified
by the evolution of the wavelength λ as B→ 0. For the tensional
wrinkles that we observe, the wavelength should scale as λ ∼
B1/4 (2). For the tensional folds, a scaling argument leads to
λfold ∼ B2/9 (SI Appendix) for the distance between folds. Since
the loops at the tips of the folds follow wloop ∼ B1/3, then
λfold � wloop as the bending modulus vanishes, ensuring that
the folds remain spatially separated in this limit.

Materials and Methods

To construct the balloons, disks of radius 83 mm are cut from polyethylene
produce bags of thickness t = 8.0 ± 0.8 μm or from plastic food wraps with
t = 10.2± 0.8 μm. The stress–strain curves for the sheets are measured with
a tensile tester (Test Resources, 250 lbs actuator). Depending on the direction
of measurement, we obtain Young’s moduli for the sheets to vary between
E = 315 MPa and 1,103 MPa for produce bags and between E = 89 MPa
and 195 MPa for food wraps. The measurements are detailed in SI Appendix.
An air-tight seal is formed by pressing a heated iron ring of diameter 166
mm onto the double layer. The balloon is then filled with water and air and
suspended from the top center. Despite the anisotropy of the Young’s modulus
measured in the balloon membrane, we do not see large systematic variations
in the morphological behaviors in a suspended balloon as a function of angle of
loading. Side views of the balloons are photographed with a Nikon DLSR with
backlighting from an LED white screen.

To obtain the horizontal cross-sections, we illuminate a slice of the balloon
with a horizontal sheet of laser light, and we photograph the scattered light
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from the side at an oblique angle. A calibrated perspective transformation is
then applied to produce the final horizontal image. To better capture the back of
the balloon, we reflect a portion of the light sheet onto the back of the system with
two vertical mirrors. The above procedure is sometimes repeated from different
azimuthal angles and the results are superimposed, to reduce noise and better
capture the back of the balloon. The images captured from different angles
collapse well on one another, indicating that the cross-sections are obtained
accurately without geometric distortion.

Data, Materials, and Software Availability. The data that support the
findings of this study are available in SI Appendix.
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