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Optimal wrapping of liquid droplets with
ultrathin sheets
Joseph D. Paulsen1,2*, Vincent Démery1*, Christian D. Santangelo1, Thomas P. Russell2,3,4,
Benny Davidovitch1 and Narayanan Menon1

Elastic sheets o�er a path to encapsulating a droplet of
one fluid in another that is di�erent from that of traditional
molecular or particulate surfactants1. In wrappings of fluids
by sheets of moderate thickness with petals designed to curl
into closed shapes2,3, capillarity balances bending forces. Here,
we show that, by using much thinner sheets, the constraints
of this balance can be lifted to access a regime of high
sheet bendability that brings threemajor advantages: ultrathin
sheets automatically achieve optimally e�cient shapes that
maximize the enclosed volume of liquid for a fixed area
of sheet; interfacial energies and mechanical properties of
the sheet are irrelevant within this regime, thus allowing
for further functionality; and complete coverage of the fluid
can be achieved without special sheet designs. We propose
and validate a general geometric model that captures the
entire range of this new class of wrapped and partially
wrapped shapes.

Elastic sheets can spontaneously wrap liquid drops in a process
that has been called ‘capillary origami’2, and thus could be used
to contain toxic or corrosive liquids, to sequester a delicate
liquid cargo, or to shrink-wrap drops of a defined volume. An
ultrathin sheet should be especially suitable for encapsulating
liquids, as deformation of its naturally flat state involves only
small energetic costs of bending. Because of their flexibility,
ultrathin films admit small-scale structures that give the sheet
new pathways for global deformation, beyond the smooth large-
scale bending that occurs in thicker sheets2–9. We study the
conformations of an ultrathin (∼100 nm) circular sheet on a
drop whose volume is gradually decreased until it is completely
wrapped. In this process, small-scale wrinkles and crumples10
produce non-spherical wrappings, and large-amplitude folds finally
lead to polygonal drop shapes. This sequence is counter to the
intuition that a highly bendable film would simply conform to the
spherical shape of a drop.Wrinkles11–14, folds15–17 and crumples10,18,19
are challenging to understand on their own, let alone when
they interact in a highly curved geometry. However, we show
that the essence of the wrapping process can be understood
without describing any small-scale features. We present a general
model wherein the exposed liquid surface area is minimized,
under the constraint that the sheet cannot stretch. This model
explains all the observed partially and fully wrapped shapes purely
geometrically, independent of material parameters, in a regime of
thickness that often occurs in nature and is easily achieved in
technological settings.

In our studies, a spin-coated polystyrene film with a thickness t ,
Young’s modulus E = 3.4GPa, and Poisson’s ratio Λ= 0.34 was
cut into a circle of radius W = 1.52mm and placed on the
surface of a water drop immersed in silicone oil. The sheet is
characterized by a stretching modulus, Y = Et , and a bending
modulus, B=Et 3/[12(1−Λ2)]. The density difference between
the silicone oil and the drop is 1ρ = 30.2± 0.8 kgm−3 and the
interfacial tension is γ = 21.8± 0.5mNm−1. The capillary length
is lc=

√
γ /1ρg=8.6mm, so gravity effects are minimal. The drop

sits on a layer of high-density fluorinated oil (ρ=1,860 kgm−3). The
volume, V , of the drop is controlled using a needle with a syringe;
hereafter we refer to the effective radius R≡((3/4π)V )1/3.

When the volume of the drop is decreased, increasing the size
ratio W/R, the sheet passes through a sequence of shapes whose
side and top views are shown in Fig. 1a–d. In Fig. 1a, the sheet
is decorated by radial wrinkles and stress-focusing crumples10, but
the gross shape is still axially symmetric. On decreasing the volume
further, folds form around the perimeter, shown in Fig. 1b, and
axisymmetry of the overall shape is broken. The drop then assumes
a polygonal shape with five corners (Fig. 1c). Finally, two of these
corners disappear, leaving a triangular wrapping (Fig. 1d). Figure 1e
shows another triangular wrapping, using a t=241 nm film. Similar
progressions are found for t ranging from 29 to 394 nm, even
though the bendingmodulus has increased by a factor of 2,500. This
motivates a view of wrapping that is independent of the mechanical
properties of the sheet.

When the energies of bending and stretching the sheet are
both negligible, the only remaining energy relevant to the wrapped
shape comes from the area Afree of the exposed oil–water surface.
We introduce a purely geometric model in which we minimize
the energy

U =γAfree (1)

under the constraint that the sheet can compress but cannot
stretch—that is, the distance between two points x and y of the flat
disc satisfies

|f(x)− f(y)|≤|x−y| (2)

where f is the gross shape that ignores local features. The distance is
measured along the surface f, which is ‘submetric’ to the initial flat
disc20. The sheet (of radiusW ) and liquid interface enclose a volume
(4π/3)R3. The only dimensionless parameter is the size ratioW/R.
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Figure 1 | Side and top views of a circular polystyrene (PS) sheet wrapping a water drop immersed in silicone oil. a–d, A PS disc of thickness t=29 nm
and radius W= 1.52 mm on a drop that is gradually shrunk. In a, the sheet is decorated with wrinkles and crumples. Axisymmetry of the overall shape is
broken in b, when folds form at the perimeter of the sheet. The drop has a polygonal shape in c and d. e, A 241 nm sheet is also triangular at complete
wrapping. f, A di�erent complete wrapping shape with approximate two-fold symmetry. Scale bar, 1 mm. See also Supplementary Movies 1 and 2.
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Figure 2 | Axisymmetry breaking probed by side-view profiles. a,b, Side-view profiles of wrapping for several drop sizes, for a t=29 nm sheet (a) and for
nine di�erent thicknesses ranging from 29 to 394 nm (b). Solid lines: experiment. Dotted lines: analytic theory for axisymmetric wrapping with no free
parameters. (For the largest drop size, a circle is also shown for comparison.) The data are described well by the axisymmetric theory for large drop size,
but the profiles lose axisymmetry at small drop size. c, Axisymmetry breaking of the sheet, quantified by the symmetric Hausdor� distance between the
experimental side-view profiles of the sheet and the analytic axisymmetric profiles, versus W/R. The Hausdor� distance between two curves X and Y,
denoted dH(X,Y), is the maximum distance from a point in X to the closest point in Y; we measure dH(X,Y)≡(1/2)dH(X,Y)+(1/2)dH(Y,X). Inset: dH at
W/R= 1.3, when a folding pattern is clearly established. The values are constant over a wide range of bendability, γW2/B, consistent with our model.
Deviations from data collapse are discernible only for the thickest sheets (321 and 394 nm), marked with thinner lines in a,b and open symbols in c.

Neglecting the elastic energy is justified by a separation of scales
between bending, surface tension and stretching:

B
W 2
�γ�Y (3)

In our experiments, B/(γW 2) < 5× 10−4 and γ /Y < 3× 10−4.
The first inequality means that the ‘bendability’ is large21: the cost
for small-scale bending into wrinkles and folds is negligible. For
our materials, this requires using sheets much thinner than 5 µm.
We thereby depart from the regime typically probed in ‘capillary
origami’2–9, wherein bending energy balances surface energy and
small-scale wrinkling is not observed. The second inequality means
that surface tension induces a negligible strain, so the sheet can
be regarded as unstretchable. (Any polystyrene (PS) sheet that can
be practically fabricated satisfies this condition at an oil–water
interface.) Although the sheet is inextensible in this limit, the overall
shape may be compressed by wrinkles and folds, in accord with
equation (2), which gives the sheet considerable freedom to deform
without stretching. This compression does not affect the area of the
sheet in contact with the drop or the ambient fluid (neglecting any

self-contact): only the oil–water interfacial area may change. In the
limiting cases of a large drop10 and close to complete wrapping,
equation (3) may need to bemodified through functions of the ratio
W/R. In the case of nearly complete wrapping, the surface energy in
equation (1) approaches zero; here, energy due to bending or other
effects such as self-attraction or gravity could become significant.

When the gross shape is axisymmetric, our model is equivalent
to the force balance of an open parachute22 (see Supplementary
Section 1). The solutions are shapes that are portions of an inflated
Mylar balloon23, which belong to the larger class of ‘inflated
surfaces’20,24, where the volume contained by an unstretchable closed
sheet is maximized. In Fig. 2a,b we compare the contours of this
axisymmetric solution with the experimental profiles for several
drop sizes and for sheet thicknesses ranging from 29 to 394 nm.
For each drop, we select the theoretical curve that matches its
horizontal extent; there is no free parameter in the comparison. The
axisymmetric solution is in excellent agreement with experiment at
large drop sizes.

As shown in Fig. 1 and also in Fig. 2a,b, the wrappings
break axisymmetry for smaller drops. This deviation from the
axisymmetric solution increases as the drop volumedecreases, and it
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Figure 3 | Theoretical wrapping shapes and their e�ciency. Normalized
exposed liquid surface area Afree/(4πR2) as a function of the size ratio
W/R. Afree/(4πR2) approaches 1 for large drops (that is, as W/R→0) and
vanishes at a finite value of W/R, when wrapping is complete. a, Blue
dashed line and sketch: optimal axisymmetric configuration. Closed circle:
complete optimal axisymmetric wrapping. b, Orange dotted line and
sketch: Surface Evolver simulation. c, Solid red line and sketch: optimal
analytically determined polygonal construction. Closed triangle: complete
triangular wrapping. d, Half-filled circle and sketch: inflated shape where
two halves of the edge of the sheet are in contact.

has no trendwith thickness. To show this quantitatively, Fig. 2c plots
the symmetric Hausdorff distance, dH (as defined in the caption to
Fig. 2c), between the contour of the sheet and the axisymmetric
shape, as a function of the size ratioW/R, for each sheet thickness.

To show that non-axisymmetric shapes can emerge from our
geometric model, we numerically search for minimum-energy
configurations of the model using ‘Surface Evolver’ (seeMethods)25.
For small W/R, the simulated shapes are consistent with the

analytic axisymmetric solution. For large W/R, non-axisymmetric
configurations are found with smaller exposed liquid areaAfree. This
is demonstrated in Fig. 3, which plotsAfree normalized by the area of
the bare drop, 4πR2, as a function ofW/R.

We pause here to note that the breaking of axial symmetry
by these ultrathin circular films is perhaps counter to intuition.
One might imagine that an infinitely bendable sheet would simply
conform to the spherical shape that the drop would otherwise have.
Instead, geometrical constraints in the sheet lead to highly non-
spherical shapes that minimize the exposed interfacial area.

The appearance of folds marks the breaking of axisymmetry in
both experiment and simulation. Whereas wrinkles absorb excess
azimuthal length uniformly around the sheet, folds localize excess
length froma finite angular region. (Crumples, whosemechanics are
not fully understood10, do not absorb a large excess length in a small
structure.) To examine folded shapes in three dimensions, we use a
laser sheet to scan the topography of a fluorescently dyed PS sheet.
Figure 4a shows the three-dimensional shape of a portion of the
sheet forW/R=1.38. Going from the edge of the sheet towards the
centre, the contour lines become straighter, indicating an angular
sectorwith predominantly radial curvature. Figure 4b shows top and
side views of the drop. In Fig. 4c, we plot the height, z , of the sheet
versus the radial coordinate, r . Cross-sections of the sheet halfway
between two folds exhibit the same radial profile as the optimal
axisymmetric wrapping. Thus, the sheet consists approximately
of N ‘petals’ that are curved in one direction, following the
parachute shape along their centrelines. These petals join together
at folds.

For a complete wrapping with cross-sections that are regular
N -gons (as opposed to the circular cross-sections of the axisymmet-
ric case), the optimal midline of the curved faces corresponds to the
parachute shape (see Supplementary Section 2.1). This wrapping is
obtained by drawingN petals on a flat circular sheet, and curling the
petals by folding away the material between them (that is, the grey
regions in Fig. 4d). A construction for a partial wrapping is obtained
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Figure 4 | Polygonal partial wrapping by petals and folds. a, Three-dimensional shape of a wrapping obtained from scanned sheet illumination, deep in the
non-axisymmetric regime. A film of thickness 61 nm is prepared with Nile Red fluorescent dye and scanned with a green laser (λ=532 nm). b, Top view of
the wrapping in a. Inset: side view from the angle indicated by the arrow. Scale bar, 500 µm. c, Height of the sheet z versus the radial coordinate, r. Red and
green points correspond to the two radial cuts highlighted in a. Dotted line: parachute shape. d, Petal shapes. The grey areas accumulate into folds.
e, Rendered polygonal wrapping of the petal shape in d. f, Number of folds as a function of size ratio, W/R. Line: optimal number of sides in the simulation
with a polygonal construction for the sheet (error bars denote the uncertainty in locations of the crossings of the computed energy curves). Coloured
circles: experiment (same colour code as in Fig. 2). The thickest two sheets (321 and 394 nm, open symbols) have fewer folds, indicating the possible onset
of a regime in which bending energy plays a role.
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by cutting these petals with a smaller circle (as shown by the thin
dotted line in Fig. 4d for N =4) and computing the exposed liquid
surface using ‘Surface Evolver’ (as pictured in Figs 4e and 3c, and
described in Supplementary Section 2.2). At fixed W/R, we deter-
mine the number of folds,N , that gives the lowest energy wrapping.
Figure 4f shows thatN decreases from large values nearW/R'1.4,
down to N = 3 close to complete wrapping. The number of folds
predicted by this construction is consistent with experiment. For
W/R& 1.4, the best suchN -petal wrapping has a lower energy than
axisymmetric wrapping, and agrees well with the full simulations of
the sheet and the exposed interface, as shown in Fig. 3.

An alternative completely wrapped geometry with two-fold
symmetry is sometimes seen in the experiments, as pictured in
Fig. 1f. Here, two halves of the sheet’s edge are in contact with each
other, as for an empanada, calzone, or pierogi. Our simulations show
that this wrapping is more efficient than the triangular construction
for complete wrapping: it encapsulates a drop atW/R'2.26 instead
of W/R' 2.55. This finite difference is too large to be affected by
bending or other corrections. Instead, history plays an important
role in the selection of the complete wrapping configuration,
because folds can shrink or grow but do not translate along the
perimeter. Thus, a three-fold partial wrapping cannot reposition its
folds to be equilateral, nor can it transform into an efficient two-fold
complete wrapping.

The nature of the folding transition, as well as the critical value
ofW/R at which the axisymmetric state becomes unstable to folds,
await theoretical analysis (see Supplementary Section 2.3). At small
values ofW/R, our experiments and simulations, as well as previous
work10, indicate that the shape is wrinkled but has no folds. As
W/R is decreased from large values toW/R'1.4, our simulations
show that the optimal number of folds increases (see Fig. 4f).
This series of polygonal shapes approaches the axisymmetric
shape, which suggests a possible continuous transition from the
axisymmetric state.

We have witnessed how a delicate circular elastic sheet with
negligible bending cost will nonetheless guide a liquid drop to a non-
spherical shape. A variety of other final states can be achieved by
starting with non-circular wrappers (as indicated in Supplementary
Section 3, Supplementary Fig. 4 and Supplementary Movie 3, where
we use a rectangular strip). We expect that elastic wrappers could
also tailor the mechanical rigidity of drops. For example, our model
suggests that we can achieve internal pressures that are a non-
trivial function of the wrapping ratio W/R, allowing substantial
suppression of the internal pressure (as indicated in Supplementary
Section 1 and Supplementary Fig. 2). Although particles can
also stabilize non-spherical shapes by interfacial jamming26–28,
an elastic sheet offers a route to achieving a discrete set of
metastable shapes with different symmetries. This scheme is robust
to spatial variations of surface chemistry, because the wrapping
process does not depend on a competition of material-dependent
energy scales.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Experiment. Our thin films were made by spin-coating dilute solutions of
polystyrene (PS) (Mn=99 k,Mw=105.5 k, Polymer Source) in toluene (99.8%,
Sigma-Aldrich) onto glass microscope slides (25×75×1.0mm), following ref. 11.
Film thickness was varied by changing the spinning speed (1,000–4,000 r.p.m.) or
the polymer concentration (1–5% w/w). The thickness was measured using a
white-light interferometer (Filmetrics F20-UV). Circular films (radius
W=1.52mm) were cut near the centre of the slides, where the thickness is
uniform to within 2%.

The circular film was floated onto water in a glass container having a
hydrophobic surface treatment. Silicone oil (Fisher Scientific) and high-
density fluorinated oil (Perfluoro-compound FC-40, Acros Organics) were
then added sequentially, and the layer of water collected into a single drop.
(The two oils are partially miscible and were mixed before the experiment.)
Shrinking this drop through a needle allows one to tune the wrapping
ratio,W/R.

In the laser scanning experiments, fluorescent dye (Nile Red, TCI America) was
first dissolved into the toluene before adding the PS. A sheet of green laser light
(λ=532 nm) was scanned across the polymer sheet from above, and long-pass
filters were used to image the emitted light from the polymer sheet. The
three-dimensional shape of the sheet was reconstructed from simultaneous side
and top views of the scan.

Numerical computations. The numerical computations were performed using the
software ‘Surface Evolver’25. We studied the behaviour of the whole model system,
which consists of a sheet attached to a liquid interface. The liquid interface is given
a surface tension γ =1. The sheet, a disc of radiusW=1, is given a finite stretching
modulus Y =10 and no bending modulus (B=0). In each simulation, the enclosed
volume V is held constant. After minimizing the energy using the conjugate
gradient algorithm, the stretching modulus is multiplied by 10 and the
minimization is performed again. The process is repeated until the stretching
modulus reaches 104.

For small volumes (that is, largeW/R), the system may find a local minimum
with a large number of folds. In this situation, a small random displacement is
applied to all the vertices (using the jiggle command) and the minimization is
performed. These steps are repeated until the system finds a steady configuration.

Variants to this scheme are used in the cases of the polygonal partial wrapping
construction, and for complete wrapping. To compute the exposed liquid area for
the polygonal construction for partial wrapping, the analytical polygonal shape is
imposed to the sheet, and the area of the liquid interface is minimized at constant
volume. To maximize the enclosed volume at complete wrapping, one must specify
how the sheet is closed. In the empanada shape, two halves of the edge of the sheet
are sewn together, and the enclosed volume is then maximized. The resulting shape
is rendered in Fig. 3d; it encloses a volume V '0.36W 3 (W/R'2.26, half-filled
circle on Fig. 3).
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1 Axisymmetric shape

We adapt the arguments used by Taylor to compute the shape of a parachute (22) to derive the

shape of the sheet on a drop when it is assumed to be axisymmetric. This direct approach uses

force balance arguments; a purely geometrical approach could be adapted from (23).

The parametrization is pictured in Fig. S1: the polar material coordinates are denoted (s, θ).

The gross shape of the sheet is axisymmetric, of the form

X(s, θ) =



r(s) cos(θ)
r(s) sin(θ)

z(s)


 . (1)

Optimal wrapping of liquid droplets with ultrathin sheets
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We denote φ(s) the angle between X ′ and an horizontal plane, φ(s) = − arctan(z′(s)/r′(s))

(the prime denotes a derivative with respect to s). The resulting shape satisfies r(s) < s for any

s > 0, hence all the lines of latitude (i.e., circles of constant s) have a negative effective strain,

namely wrinkles collapse the real strain, and the hoop stress vanishes, σθθ = 0. The radial stress

is σss(s).

An in-plane force balance in the s direction shows that ∂s[sσss(s)] = 0 (10, 21):

σss(s) =
c

s
. (2)

A second equation comes from a vertical force balance on a portion of the sheet s ≤ s0, that

reads Pπr(s0)
2 = 2πs0σss(s0) sin(φ(s0)), where P is the pressure in the drop. The pressure

is exerted on a disc of radius r(s0), and is balanced by the radial stress exerted on the circle of

latitude whose length is 2πs0. Using Eq. 2, the vertical force balance equation is

r(s)2 =
2c

P
sin(φ(s)). (3)

If the sheet has no radial strain, its length in the radial direction is the rest length, i.e.,

|X ′(s)|2 = r′(s)2 + z′(s)2 = 1; thus r′(s) = cos(φ(s)), z′(s) = − sin(φ(s)). Differentiating

Eq. 3 and using r′(s) = cos(φ(s)) leads to

φ′(s)2 = α2 sin(φ(s)), (4)

with α2 = 2P/c. We recognize this equation as the conservation of the energy of a simple

pendulum, up to the variable change φ = (π/2)−ψ. With the boundary condition φ(0) = 0 set

by the regularity of the sheet at the pole, the solution is

φ(s) =
π

2
− 2 arcsin

(
1√
2
sn

(
αs√
2
+K(1/2)

∣∣∣∣
1

2

))
, (5)

where sn(x|k2) is a Jacobi elliptic function and K(k2) is the complete elliptic integral (28); k

is the elliptic modulus (here, k = 1/
√
2). On the exterior of the sheet the liquid surface is a
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sphere of radius Rd. Since we consider the sheet to have zero bending modulus, a finite angle

cusp between the liquid interface and the sheet is excluded, hence Rd = r(W )/ sin(φ(W )).

For a given value of α, the volume of liquid and the free area of the liquid interface can be

computed, and are shown by the blue curve in Fig. 3. Note that the pressure P and constant c

are determined as functions of the volume of the drop V and the surface tension γ. Figure S2

shows the pressure P (made dimensionless by rescaling with γ/W ) versus the size ratio, W/R.

As the volume of the drop is reduced (increasing W/R), the pressure increases at first, and then

decreases until it vanishes at complete wrapping.

From the completely wrapped shape (rcomp(s), zcomp(s)), which is defined by rcomp(W ) =

0, the partially wrapped shapes can be expressed through

rω(s) = ω−1rcomp(ωs), (6)

zω(s) = ω−1rcomp(ωs), (7)

where ω ∈ [0, 1] is the wrapping ratio (ω = 0 is the flat state, ω = 1 is the complete wrapping).

This can be shown from inextensibility (r′(s)2 + z′(s)2 = 1) and Eq. 4. In the following,

r(s) and z(s) stand for rω(s) and zω(s) for any ω, unless stated otherwise. We refer to the

axisymmetric shapes given by Eqs. 6 and 7 as the “parachute” shapes (22).

2 Non axisymmetric states

2.1 Polygonal shape at complete wrapping

We determine the properties of regular polygonal shapes. We first address the case of complete

wrapping, which is simpler. As stated in the main text, the completely wrapped configuration is

selected by its volume: the larger the volume it encloses, the sooner complete wrapping occurs

upon reducing the volume of the drop. This optimization problem leads to precise polygonal

configurations.
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A regular polygonal shape consists of N petals rooted at the center of the disc (see Fig. 4D

and E). The full shape is determined by the distance rN(s) between the vertical axis and the

points of the centerline of the petals that lie at a material distance s from the origin. The

horizontal cross-section containing this point is a polygon of area

aN(r(s)) = N tan
( π

N

)
rN(s)

2. (8)

Denoting zN(s) the vertical position of this point, the enclosed volume is given by

VN = N tan
( π

N

)∫ W

0

rN(s)
2|z′N(s)|ds. (9)

The only difference between this expression and the expression giving the volume of the ax-

isymmetric shape is the prefactor of the integral, which is π for the axisymmetric shape. Note

that N tan(π/N) −→
N→∞

π: the axisymmetric shape can be seen as a polygonal shape whose

number of sides goes to infinity.

The inextensibility constraint for the petals centerline is identical to the axisymmetric case,

r′N(s)
2 + z′N(s)

2 = 1. (10)

Eqs. 9 and 10 define the same optimization problem for the axisymmetric shape (23). As a

result, the petals centerline follow the parachute shape, rN(s) = r(s), zN(s) = z(s), and the

volume of the N -sided complete wrapping is given by

VN =
N

π
tan

( π

N

)
Vaxi, (11)

where Vaxi is the volume of the axisymmetric shape. The volume is a decreasing function of N ,

and is thus maximal for N = 3.

The enclosed volume of the axisymmetric wrapping is Vaxi � 0.15W 3 (W/R � 3.02),

whereas the triangular shape encloses a volume V3 � 0.25W 3 (W/R � 2.55).
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2.2 Polygonal shape at partial wrapping

We use the polygonal shape at complete wrapping as a construction for the shape of the sheet at

partial wrapping. To construct a partial polygonal wrapping, we cut a disc out of the flat petal

pattern for a complete polygonal wrapping (see Fig. 4D; an example cut is shown by the dotted

line). This disc is rescaled so that it has radius W . As in full wrapping, creases are made along

the edges of the petals (solid lines in Fig. 4D), so that the gray portions accumulate into folded

flaps. An example of the folded shape for n = 4 at one value of W/R is shown in Fig. 4E. The

n = 4 flat petal pattern is reproduced in Fig. S3; the interested reader may wish to print, cut

out, and fold their own wrapping from this template.

To determine the shape of the liquid interface, the edge of the sheet should be parametrized

completely; this is done by writing the shape of a half of a single petal in material coordinates,

which is easier using the cartesian material coordiates (u, v) = (s cos(θ), s sin(θ)):

XN,ω(u, v) =



rω(u)
v

zω(u)


 , (12)

for 0 ≤ v ≤ tan(π/N)rω(u). The part of the sheet such that v > tan(π/N)r(u) is absorbed in

the fold (grey area in Fig. 4D), and has no impact on the energy of the sheet, so that we do not

need to describe it. In polar coordinates, the shape reads

XN,ω(s, θ) =



rω(s cos(θ))
s sin(θ)

zω(s cos(θ)


 , (13)

for θ ∈ [0, θ∗(s)], where s sin(θ∗(s)) = tan(π/N)rω(s cos(θ
∗(s))). The shape for θ ∈

[
θ∗(s), π

N

]

is absorbed in the fold. The shape of the other half of the petal (−π/N ≤ θ ≤ 0) and of the

other petals is obtained by symmetry.

The shape of the liquid interface is determined numerically using the software “Surface

Evolver” (as described in the Methods section). For a given volume V , number of petals N and
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wrapping ratio ω, the shape of the interface of minimal area is determined; its area is the energy

of the configuration. Then, the energy is minimized as a function of ω, and then as a function

of N , to give the solid red line of Fig. 3. The best number of sides as a function of the size ratio

W/R is plotted as black triangles and solid line in Fig. 4F.

2.3 Perturbation of the axisymmetric shape

We have also performed a calculation to test the stability of the axisymmetric shape to the

introduction of a small fold. For any wrapping ratio ω, the polygonal shape converges to the

axisymmetric shape when the number of folds N goes to infinity. As a consequence, a polygonal

shape with a large number of folds can be seen as a perturbation of the axisymmetric shape, with

ε = π/N as the small parameter. The stability of the axisymmetric shape against folding can

then be investigated by looking at the derivative of the energy with respect to ε. This stability

analysis would determine if there exists a finite critical threshold (W/R)c where the wrinkle-

to-fold transition occurs.

The partial polygonal wrapping gives an exact construction for the shape of the sheet. How-

ever, a numerical analysis suggests that the effect of a small fold on the liquid interface is not

local. As a consequence, an analysis of the stability of the axisymmetric shape to folding awaits

a full description of the liquid interface.

3 Wrapping with a non-circular sheet

We have focussed our attention on the folding and symmetry-breaking behaviors of a circular

sheet wrapping a drop. Here we show that by simply changing the shape of the sheet, the

obtained wrappings can be significantly altered. Figure S4 shows a rectangular PS sheet of

thickness t = 113 nm, with an aspect ratio of length to width of 6.5, placed on a water drop

immersed in silicone oil. As before, we reduce the volume of the drop through a needle to
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explore the wrapping shapes. At first, the sheet curls along its length, adopting a radius of

curvature to match the approximately spherical drop. When the drop is small enough, the two

short edges of the sheet meet, forming a ring around the drop, as shown in Fig. S4C. When the

volume of the drop is reduced further, the sheet buckles in several locations along its two long

edges (Fig. S4D). This buckling transition is shown in Movie S3.

Figure S1: Sheet at rest (top) and adsorbed to the drop surface (bottom). The shape is obtained
by revolution around the z axis. s is the material coordinate corresponding to the distance to
the center of the sheet in the rest state.
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Figure S2: Non-dimensional pressure inside an axisymmetrically-wrapped drop. For small
W/R (i.e., when the drop is much larger than the sheet), the presence of the sheet has little
effect on the curvature of the fluid interface, and therefore the pressure is nearly equal to the
value for a spherical drop with no sheet (dashed line). As the volume is reduced (increasing
W/R), the pressure reaches a maximum and then decreases until it vanishes exactly at complete
axisymmetric wrapping.
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Figure S3: Template for n = 4 polygonal partial or full wrapping. To construct a full
wrapping, print and cut out the entire disc, and fold along the curved edges of the four petals.
For a partial wrapping, cut out a circular portion of the disc before folding.
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Figure S4: Side and top views of a rectangular PS sheet wrapping a water drop immersed
in silicone oil. The sheet has thickness t = 113 nm, length 5.29 mm, and width 0.81 mm. (A,B)
As the volume of the drop is decreased, the sheet conforms to the surface of the approximately
spherical drop. (C) The sheet forms a ring around the drop when the short edges of strip meet.
(D) Reducing the volume further, the sheet buckles at several points along its edge. Bottom
row: schematics of the configuration of the sheet. Scale bar, 1 mm.
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Captions for Movies S1 to S3:

Movie S1

Side view of a circular polystyrene sheet wrapping a water drop immersed in silicone oil.

The sheet has thickness t = 241 nm and radius W = 1.52 mm. The drop sits on a layer

of fluorinated oil, and its volume is controlled by a needle of diameter 0.4 mm inserted from

below. Playback: 10× real time. See Movie S2 for corresponding top view.

Movie S2

Top view of a circular polystyrene sheet wrapping a water drop immersed in silicone oil.

The sheet has thickness t = 241 nm and radius W = 1.52 mm. The drop sits on a layer

of fluorinated oil, and its volume is controlled by a needle of diameter 0.4 mm inserted from

below. Playback: 10× real time. See Movie S1 for corresponding side view.

Movie S3

Top and side views of a rectangular polystyrene sheet wrapping a water drop immersed in

silicone oil. The sheet has thickness t = 113 nm, length 5.29 mm, and width 0.81 mm. The

drop sits on a layer of fluorinated oil, and its volume is controlled by a needle of diameter 0.4

mm inserted from below. The movie shows the transition from an axisymmetric shape, where

the sheet forms a ring around the drop, to a buckled configuration.
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