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We study the deformation of a liquid interface with arbitrary principal curvatures by a flat circular sheet.
Working first at small slopes, we determine the shape of the sheet analytically in the membrane limit, where
the sheet is inextensible yet free to bend and compress. We find that the sheet takes a cylindrical shape on
interfaces with negative Gaussian curvature. On interfaces with positive Gaussian curvature, an inner
region still adopts a cylindrical shape while the outer region is under azimuthal compression. Numerical
energy minimization confirms our predictions and shows that this behavior holds for finite slopes.
Experiments on a thin polystyrene film at an anisotropic air-water interface show consistent behaviors.
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Experiments where a thin elastic solid is placed on a
surface with a different metric can reveal how a physical
system grapples with the basic mathematical conflict of two
incompatible metrics [1,2]. One avenue for studying these
problems has been to stamp [3,4] or adhere [5–7] a sheet
onto a curved substrate, thereby forcing the sheet to adopt a
wrinkle pattern that approximates the confining geometry.
In some cases, a liquid surface can provide such strong
confinement, for instance when a thin curved shell is laid
on a flat liquid bath [8–10]. In other cases, a shell can
impose its own metric on a droplet [11], a response termed
“sculpting.” Lying between these two extremes, both the
liquid and the sheet can deform into a nontrivial shape that
matches neither of the original geometries [12–15].
While much has been elucidated about the behavior of a

thin sheet confined to a liquid interface, the vast majority of
these studies were carried out in axisymmetric configura-
tions, leaving the case with different principal curvatures κx
and κy, as shown in Fig. 1, unexplored. For the case of solid
confinement, previous work has focused on the role of the
Gaussian curvature, K ¼ κxκy, at driving the film response
[3,5]. For instance, in stamping or adhesion, the deforma-
tion of the sheet is primarily controlled by the difference
between the Gaussian curvature of the sheet Ksh and that of

the solid substrate, Ksub [3,4,7,16]. This result extends to a
shell confined to a flat liquid, as gravity prevents large
deformations [8–11]. However, whether this result gener-
ally applies to liquid interfaces remains unclear.
Here, we study this problem using analytical calcula-

tions, numerical energy minimization, and experiments. We
use the simplest theoretical model: the sheet is treated as an
inextensible, highly flexible membrane that can compress
and wrinkle freely [13,17]. In the limit of small slopes, we
determine the shape of the sheet analytically. For both
positive and negative Gaussian curvatures, we find a region
of the sheet that forms a cylindrical shape, where the
sheet only curves along a single principle axis [Figs. 2(a)
and 2(b)]. We find that the deformations are not controlled

FIG. 1. Setup: a flat circular sheet with radius W ¼ 1 is placed
on a liquid interface with principal curvatures κx and κy. The
curvature difference Δκ ¼ κx − κy is set by the shape of the edge
while the mean curvature H ¼ ðκx þ κyÞ=2 is set by the pressure
applied under the interface.
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solely by the Gaussian curvature but instead by the mean
curvature and the difference between κx and κy. Our
predictions are confirmed and extended to finite slopes
by numerical energy minimization and are compatible with
the experimental observation of a thin polystyrene film
placed on an anisotropic air-water interface. Our results
comprise a fundamentally different response from related
studies with other forms of confinement [3–5,7–10,16].
A liquid interface with arbitrary curvatures can be

formed by applying a pressure P ¼ −2γH under the
interface, where γ is the surface tension of the interface,
and pinning its edge at a frame with radius L and height
ζðL; θÞ ¼ ΔκL2 cosð2θÞ=4þHL2=2 (Fig. 1). We assume
that the vertical extension of the interface, scaling as κiL2,
is small with respect to the capillary length, so that the
effect of gravity is negligible. Last, we restrict ourselves
to small slopes. Under these conditions, the height ζ
of the liquid interface, which satisfies ∇2ζ ¼ 2H and
Dirichlet boundary conditions at the frame reads, in polar
coordinates,

ζ0ðr; θÞ ¼
H
2
r2 þ Δκ

4
r2 cosð2θÞ; ð1Þ

where H and Δκ are related to the principal curvatures κx
and κy byH ¼ ðκx þ κyÞ=2 andΔκ ¼ κx − κy. We choose x
as the most curved direction, κx > jκyj. While all the
calculations below can be performed for arbitrary values
of L, for simplicity we give in the main text only the results
for L → ∞ [18].
We then place a circular inextensible sheet with radiusW

at the center of the interface (we now use W as the unit
length). The sheet is treated as inextensible but with zero

bending modulus; such a membrane strongly resists in-
plane stretching while being free to wrinkle and deform
under minute compressive stresses; such small-scale
wrinkling can allow lengths in the sheet to effectively
shorten [13,17,18,20]. We assume a vertical displacement
of the sheet (r ≤ 1) of the form

ζðr; θÞ ¼ c2ðrÞ cosð2θÞ þ c0ðrÞ: ð2Þ

With the sheet, the shape of the liquid interface (r ≥ 1) is
perturbed and takes the form

ζðr; θÞ ¼ H
2
r2 þ

�
Δκ
4

�
r2 −

1

r2

�
þ c2ð1Þ

r2

�
cosð2θÞ: ð3Þ

We use force balance to determine the shape of the sheet.
We start with the case where the edge of the sheet is under
azimuthal compression so that the azimuthal component
of the stress vanishes. The in-plane force balance gives
∂rðrσrrÞ ¼ 0, where σrr is the radial component of the
stress, hence σrrðrÞ ¼ γ=r due to the boundary condition
σrrð1Þ ¼ γ.
We now use the vertical force balance: σrrðrÞ∂2rζðr; θÞ ¼

2γH. Inserting the vertical displacement (2) and the radial
stress σrrðrÞ ¼ γ=r, we find c002ðrÞ ¼ 0 and c000ðrÞ ¼ 2Hr.
Using the continuity of the height and slope at the edge of
the sheet leads to

c00ðrÞ ¼ Hr2; ð4Þ

c2ðrÞ ¼ ½Δκ − 2c2ð1Þ�rþ 3c2ð1Þ − Δκ: ð5Þ

Unless Δκ ¼ c2ð1Þ ¼ 0, these expressions cannot hold
down to the center of the sheet as there would be a
singularity at the origin. The slope along y, c00ðrÞ−c02ðrÞ
reaches 0 at r ¼ lwhereHl2 ¼ Δκ − 2c2ð1Þ, pointing to a
cylindrical shape. We thus assume that the shape is
cylindrical for r≤l, meaning that c00ðrÞ ¼ c02ðrÞ ¼ Hlr:
the sheet is curved only in the x direction, with curvature
κc ¼ 2Hl. Matching the height of the cylinder at r ¼ l
with Eq. (5) leads to c2ð1Þ ¼ ðΔκ −Hl2Þ=2 and

l2ð3 − lÞ ¼ Δκ
H

¼ 2ðκx − κyÞ
κx þ κy

: ð6Þ

This equation admits a solution in the range [0, 1] forΔκ=H
in the range [0, 2], corresponding to κy in the range ½0; κx�.
As expected, l ¼ 0 in the axisymmetric case κx ¼ κy and
l ¼ 1 in the cylindrical case κy ¼ 0. A representation of the
predicted shape for 0 < κy < κx is shown in Fig. 2(a).
Based on the calculation above, we assume that the

shape remains cylindrical for κy <0: c0ðrÞ¼ 1
4
κcr2þc0ð0Þ,

c2ðrÞ ¼ κcr2=4. As the edge is under azimuthal tension, it
can carry a stress; moreover, since the sheet is inextensible,

FIG. 2. (a),(b) Rendering of the shapes predicted for κy ¼ κx=2
and κy ¼ −κx=2, respectively. The shape is cylindrical in the
yellow region. (c),(d) Values of c0ðrÞ and c2ðrÞ obtained from
the fits (symbols) and theoretical predictions (solid lines) for
κy ¼ κx=2 and κy ¼ −κx=2, respectively, for L ¼ 1.2.
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the stress can be localized at the edge, and we denote this
singular part σ̂θθðrÞ ¼ Σδðr − 1Þ. This singular azimuthal
stress can give rise to a stress jump in the longitudinal
direction, as can be seen from the in-plane force balance
∂r½rσrrðrÞ� ¼ σθθðrÞ, leading to

σrrð1−Þ ¼ γ − Σ: ð7Þ

The singular azimuthal stress also allows a slope disconti-
nuity at the edge, which is given by the vertical force
balance:

γ∂rζð1þ; θÞ − σrrð1−Þ∂rζð1−; θÞ þ Σ∂2θζð1; θÞ ¼ 0: ð8Þ

Combining these equations with Eq. (3), we can determine
the shape of the sheet and the singular edge stress:

κc ¼
2

3
ðH þ ΔκÞ; ð9Þ

Σ
γ
¼ 1 −

2H
κc

¼ 1 −
3H

H þ Δκ
: ð10Þ

The edge stress should be positive, which is the case for
2H ≤ Δκ, or κy ≤ 0, as expected. A representation of the
predicted shape for −κx < κy < 0 is shown in Fig. 2(b).
We compare our theoretical predictions to numerical

energy minimization using “Surface Evolver” [18,21]. We
allow mesh edges within the sheet to shorten at zero cost, to
capture the effect of small-amplitude, short-wavelength
wrinkles that can form in the sheet. The sheet nevertheless
resists stretching, which we implement using a large
stretching modulus, Y ¼ 1012γ. First, we check that the
shape is of the form (2) by plotting the vertical displace-
ment over a narrow annulus; the functions ciðrÞ are
then obtained by fitting the angular dependence at different
radii [18]. The results are compared to the predictions for
several values of κx and κy ¼ �κx=2 in Figs. 2(c) and 2(d);
a very good agreement is obtained.
Symmetry allows one to deduce the shape of the sheet

for arbitrary curvatures from the calculations in the case
where κx < jκyj. There are two situations where κx ¼ jκyj.
In the axisymmetric configuration, κx ¼ κy, the solution is
the parachute shape predicted by Taylor [22]. The zero
mean curvature configuration, κx ¼ −κy, deserves more
attention. Our prediction is that for negative Gaussian
curvatures the sheet adopts a cylindrical shape, which is
flat in the less curved direction of the interface. As a
consequence, the flat direction changes abruptly when κy
crosses −κx. At the transition, because the pressure across
the interface is zero, the sheet is floppy and many
configurations minimize the energy.
We have constructed solutions that satisfy force balance

and the boundary conditions [18]. Uniqueness theorems for
such a traction boundary value problem require the

elasticity to be positive definite [23], which is not the case
in our model because the sheet can compress under zero
compressive stress. Nevertheless, the agreement with the
numerical simulations allows us to conjecture that the
solution is unique for H ≠ 0. We also note that, because in
our model the bending modulus is zero, there are no
continuity constraints on the second and third derivatives
of the height.
We determine the shape of the sheet in the presence of

finite slopes numerically. We find that the sheet can adopt a
cylindrical shape over a central region or over the whole
sheet, depending on the pressure applied under the interface
and the shape of the frame (Fig. 3). Finding analytical
solutions for finite slopes is a considerable challenge for
two main reasons. First, there is no interface with constant
mean and Gaussian curvatures, so that the very question to
ask is different. Second, even in the simplest, axisymmetric
situation where κx ¼ κy, the sheet breaks axisymmetry and
no analytical solution is known [13].
Finally, we test these predictions by realizing these

boundary conditions in an experiment. We spin-coat
polystyrene films of thickness t and Young’s modulus
E ¼ 3.4 GPa, which we then cut into a disc of radius
1.7 mm and float onto a dish of deionized water
(γ ¼ 72 mNm−1) [18,24,25]. To impose a general surface
geometry around the film, we take a piece of 0.8 mm
stainless steel wire and bend its end into a circle, and then
deform the circle into an undulating frame with peak-to-
peak height 0.74 mm and inner radius 2.4 mm. We lower

FIG. 3. (a),(b) Renderings of the shapes obtained by numerical
energy minimization and (c), (d) positions of the vertices
projected on the ðx; zÞ plane (circles) and fit with a cylinder
(solid line). The parameters used are L ¼ 1.2 and (a), (c)
H ¼ −0.7, Δκ ¼ −1 and (b), (d) H ¼ −0.4, Δκ ¼ −1.6. In
(a), (b), the color indicates the distance to the cylinder fitted
in (c), (d); it is yellow for distances less than 0.04. In (c), the
cylinder is fitted only on the points at a distance r < 0.5 from the
center, which are shown in purple.
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the frame onto the water surface to corral the film within it.
Raising and lowering the frame via a micrometer stage
allows one to tune the pressure across the interface, via the
hydrostatic pressure.
Figure 4 shows the response of a film with t ¼ 107 nm.

Starting at a large negative pressure [Fig. 4(a)], we observe
radial wrinkles at the edge of the film, which are expected
when the interface has a positive Gaussian curvature.
Lowering the frame, the wrinkles shorten and disappear
entirely; the film remains completely absent of visible
wrinkling over a finite interval in frame height [Figs. 4(b)
and 4(c)], pointing to a strain-free state, such as the
cylindrical shape. Lowering the frame further, crumples
[12,25] appear within the interior of the film [Fig. 4(d)]. We
attribute this compression to the effect of gravity, which
results in a nonuniform pressure across the interface; this
effect has been quantified for a shell on an axisymmetric
interface [11]. At a lower height still, these crumples
change orientation, indicating that the axis of cylindrical
deformation has changed [Fig. 4(e)], in accordance with
our predictions. These crumples disappear upon further
lowering [Fig. 4(f)], and the progression of patterns
continues in reverse order (not shown). Finally, we repeated
the experiment with additional films of thickness t ¼ 49
and 111 nm and with a second wire frame, and we observed
the same qualitative response.
Using theory, numerics, and experiment, we have found

that a thin elastic sheet adopts a cylindrical shape when
placed on a liquid interface with negative Gaussian curva-
ture. In this situation, the sheet retains its metric and
imposes it to the interface: it “sculpts” the interface, as a
thin shell placed on a curved interface [11]. There is a slight
difference between the two cases: here, the sheet retains its
metric but not its shape, contrary to the situation in
Ref. [11], so that the sculpting is weaker here. This is
due to the fact that there are more embeddings of the flat
metric compared to the spherical one [26]. When the

Gaussian curvature of the interface is positive, the sheet
still adopts a cylindrical shape in its center, and thus
partially sculpts the interface. The “rim” that connects
the sculpted region to the liquid interface is here purely
geometric, while the one observed in Ref. [11] is due to the
finite extensibility of the sheet. Finally, we note that
whether the sheet is flat or spherical, sculpting may occur
when the Gaussian curvature of the sheet is larger than that
of the interface. Hence, while the precise response of the
sheet does not depend solely on the Gaussian curvature
mismatch, some aspects of the sheet-interface interaction
seem to be determined by the sign of the mismatch.
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D.Vella, andB.Davidovitch, Delamination from an adhesive
sphere: Curvature-induced dewetting versus buckling, Proc.
Natl. Acad. Sci. U.S.A. 120, e2212290120 (2023).

[8] H. Aharoni, D. V. Todorova, O. Albarrán, L. Goehring,
R. D. Kamien, and E. Katifori, The smectic order of
wrinkles, Nat. Commun. 8, 15809 (2017).

[9] I. Tobasco, Curvature-driven wrinkling of thin elastic shells,
Arch. Ration. Mech. Anal. 239, 1211 (2021).

[10] I. Tobasco, Y. Timounay, D. Todorova, G. C. Leggat, J. D.
Paulsen, and E. Katifori, Exact solutions for the wrinkle
patterns of confined elastic shells, Nat. Phys. 18, 1099 (2022).

[11] Y. Timounay, A. R. Hartwell, M. He, D. E. King, L. K.
Murphy, V. Démery, and J. D. Paulsen, Sculpting liquids
with ultrathin shells, Phys. Rev. Lett. 127, 108002 (2021).

[12] H. King, R. D. Schroll, B. Davidovitch, and N. Menon,
Elastic sheet on a liquid drop reveals wrinkling and
crumpling as distinct symmetry-breaking instabilities, Proc.
Natl. Acad. Sci. U.S.A. 109, 9716 (2012).
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