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1 Gradient dynamics for the anisotropic RGL equation

1. It can be shown easily that this equation derives from the functional

F [A] =

∫ (
1

2

[
|A(r, t)|2 − 1

]2
+

∣∣∣∣(∂x − i

2
∂yy

)
A(r, t)

∣∣∣∣2
)
dr. (1)

2. First, we observe that F is bounded from below: F [A] ≥ 0. Second, we compute

dF
dt

=

∫ (
∂tA

δF

δA
+ ∂tA

∗ δF

δA∗

)
dr = −2

∫
|∂tA|2dr ≤ 0; (2)

hence, F is a Lyapunov functional.

2 Multi-scale expansion of model A

3. We first write explicitly the equation for u:

∂tu = Γ(u)
[
β∇2u− v′(u)

]
. (3)

To the first order in u, v′(u) = uv′′(0) and Γ(u) = Γ(0), so that

∂tu = Γ(0)
[
β∇2u− v′′(0)u

]
. (4)

In Fourier space, it reads
∂tu = −Γ(0)

[
βq2 + v′′(0)

]
u. (5)

The state u = 0 is stable for all wavevectors q if v′′(0) > 0.

4. All the parameters Γ(0), β and a can be absorbed by a rescaling of the variables, so we are left with

∂tu = ∇2u+ ϵu. (6)

Rescaling lengths and time with t = t̄/ϵ, r = r̄/ϵ1/2, so that ∂t = ϵ∂t̄ and ∇ = ϵ1/2∇̄, we get

∂t̄u = ∇̄2u+ u. (7)

5. Expanding v(u) to the next order, the equation becomes

∂tu = ∇2u+ ϵu− gu3. (8)

Rescaling t and r as above and defining u = ϵαū, we get

ϵ1+α∂t̄ū = ϵ1+α∇̄2ū+ ϵ1+αū− ϵ3αgū3. (9)

The exponents should be equal, hence α = 1/2. Note that a non-linear term of the form u2∇2u would be irrelevant
in the limit ϵ → 0.
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3 Blow-up in the Fisher-Kolmogorov equation
We consider the Fisher-Kolmogorov equation equation for a real field u(r, t) over a domain Ω with volume V , with
a Neumann boundary condition n̂(r) ·∇u(r, t) = 0 for r ∈ ∂Ω, where n̂(r) is a unit vector normal to the boundary:

∂tu = u+ u2 +∇2u. (10)

We define the mass
m(t) =

1

V

∫
Ω

u(r, t)dr. (11)

6. Integrating the evolution equation for u, we get

ṁ(t) = m(t) +
1

V

∫
u(r, t)2dr. (12)

The Laplacian integrates to zero due to the Neumann boundary condition. Introducing the scalar product

⟨f, g⟩ = 1

V

∫
f(r)g(r)dr, (13)

we see that the second term in the evolution of the mass can be writen as

1

V

∫
u(r, t)2dr = ∥u∥2 = ∥u∥2∥1∥2 ≥ ⟨u, 1⟩2 = m(t)2. (14)

7. If m(0) > 0, then m(t) ≥ n(t) where n(0) = m(0) and

ṅ(t) = n(t) + n(t)2. (15)

We now solve this equation. First, we define p(t) = e−tn(t), so that ṗ(t) = e−t[−n(t) + ṅ(t)] = e−tn(t)2 = etp(t)2.
Integrating ṗ(t)/p(t)2 = et leads to p(0)−1 − p(t)−1 = et − 1, so that p(t) =

[
1 + p(0)−1 − et

]−1. Finally

n(t) =
1

[1 + p(0)−1] e−t − 1
. (16)

Defining t0 = log
(
1 + p(0)−1

)
, it leads to

m(t) ≥ n(t) =
1

et0−t − 1
. (17)

The lower bound diverges at t = t0, hence the solution should diverge at last at t0.
Note that the lower bound is reached if u(r, t) is uniform.
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