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1 Blood pressure waves

1. The fluid current is given by vA, so that the conservation of the fluid reads

∂tA+ ∂x(vA) = 0. (1)

2. Neglecting the viscosity of the fluid, we obtain that the flow is a plug flow (the velocity of the fluid does not
depend on the position in the cross-section) and that the velocity follows the Euler equation:

∂tv + v∂xv = −ρ−1∂xp. (2)

3. We consider an element of the artery of extent δx and δθ. Its mass is ρ0hr0δxδθ, so that its radial acceleration
is ρ0hr0δxδθ∂ttr(x, t). We now evaluate the forces on this element. The radial pressure force is r(x, t)δxδθp(x, t).
A radius change from r0 to r generates a strain (r − r0)/r and a stress E(r − r0)/r. Projecting the stress on the
radial direction, the elastic force is −Eh(r − r0)δxδθ/r0. The Newton’s second law thus reads

ρ0hr0∂ttr(x, t) = p(x, t)r(x, t)− Eh
r(x, t)− r0

r0
. (3)

Assuming that pr0 ≪ Eh means that the deformations (r − r0)/r remain small, which is the assumption of
linear elasticity. In this case, we can assume that p(x, t)r(x, t) ≃ r0p(x, t).

Last, we can translate the equation for the radius in an equation for the section A(x, t) = πr(x, t)2. Due to
small variations, A(x, t)−A0 ≃ 2πr0[r(x, t)− r0]. We arrive at

∂ttA =
2πr0
ρ0h

p− πE

ρ0A0
(A−A0). (4)

4. We start with the second law of motion. From the term linear in A on the r.h.s, we should have ∂tt = (t̄/t)2∂t̄t̄ =
[πE/(ρ0A0)]∂t̄t̄, hence t̄/t =

√
πE/(ρ0A0). Then, the constant term on the r.h.s. imposes Ā = A/A0. With these

two rescalings, the equation reads

∂t̄t̄Ā =
2r0
Eh

p+ 1− Ā, (5)

so that we have to define p̄ = 2r0p/(Eh).
Second, we use the Euler equation (Eq. (2)). Without knowing the rescaling of the variable x, we can compare

the second term on the l.h.s. and the r.h.s. to obtain v0 = v̄(x, t)/v(x, t): v20 = p(x, t)/[ρp̄(x, t)], hence v0 =√
Eh/(2ρr0). Last, using x = ℓx̄, so that ∂x = ℓ−1∂x̄, the Euler equation becomes

ℓ

v0

√
πE

ρ0A0
∂t̄v̄ + v̄∂x̄v̄ = −∂x̄p̄, (6)

so that

ℓ =

√
ρ0hr0
2ρ

. (7)
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This length scales as ℓ ∼
√
hr0, which is the geometric mean of the two lengths that define the artery. Injecting

this variable change in the conservation equation (Eq. (1)) gives the dimensionless equation

∂t̄Ā+ ∂x̄(v̄Ā) = 0. (8)

5. The rest state of the system is given by A0 = 1, p0 = 0, v0 = 0 in dimensionless variables. We write the
quantities as a =

∑
n≥0 ϵ

nan. To the order ϵ, the equations become

∂ttA1 +A1 = p1, (9)
∂tv1 = −∂xp1, (10)
∂tA1 = −∂xv1. (11)

We look for solutions under the form a1(x, t) = ei(qx−ωt)ã1. The equations become

(1− ω2)Ã1 = p̃1, (12)
ωṽ1 = qp̃1, (13)

ωÃ1 = qṽ1. (14)

We end up with 1− ω2 = ω2/q2, so that the dispersion relation is

ω =
q

1 + q2
. (15)

In the long wavelength limit, q → 0, the dispersion relation becomes ω = q, so that the phase speed is vϕ = ω/q = 1.
In this case, we also have A1 = p1 = v1.

6. First, we note that ∂x = (∂xy)∂y = ϵχ∂y and ∂t = (∂ty)∂y + (∂ts)∂s = −ϵχ∂y + ϵτ∂s. Inserting these relations
in the general equations leads to

(ϵτ∂s − ϵχ∂y)
2A′ +A′ = p, (16)

(ϵτ−χ∂s − ∂y)v + v∂yv = −∂yp, (17)

(ϵτ−χ∂s − ∂y)A
′ + ∂y[(1 +A′)v] = 0, (18)

where A′ = A − 1 =
∑

n≥1 ϵ
nAn. At order ϵ, we find that A1 = p1 = v1 is a solution provided that τ > χ. Going

to the order ϵζ with ζ > 1, these equations become

(ϵτ∂s − ϵχ∂y)
2A1 +A′ = −p, (19)

(ϵτ−χ∂s − ∂y)v + v∂yv = −∂yp, (20)

(ϵτ−χ∂s − ∂y)A
′ + ∂y[(1 +A′)v] = 0, (21)

7. Going to the order ϵζ with ζ > 1, these equations become

ϵ2χ−1∂yyA1 = p2 −A2, (22)

ϵτ−χ−1∂sv1 + v1∂yv1 = ∂yv2 − ∂yp2, (23)

ϵτ−χ−1∂sA1 + ∂y(A1v1) = ∂yA2 − ∂yv2, (24)

The ϵ factors cancel if χ = 1/2 and τ = 3/2. Deriving the first equation with respect to y and summing the two
last equations, we arrive at

∂yyyA1 = −∂sv1 − v1∂yv1 − ∂sA1 − ∂y(A1v1). (25)

Using that A1 = v1, we finally get

∂sA1 +
1

2
∂yyyA1 +

3

2
A1∂sA1 = 0, (26)

which is the Korteweg-de Vries equation.
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2 Dispersion in optical fibers

8. The nonlinear term comes from the nonlinearity of the medium, which is responsible, for instance, for the Kerr
effect. For the linear terms, we consider the propagation of a wave with a dispersion relation q(ω); the amplitude
of the scalar field ψ(x, t) composed of pulsations ω = ω0 +Ω is thus given by

ψ(x, t) = e−iω0t

∫
ψ̃(Ω)ei[q(ω+Ω)x−Ωt]dΩ. (27)

Expanding

q(ω0 +Ω) ≃ q0 + q′Ω+
q′′

2
Ω2, (28)

we get

ψ(x, t) = ei(q0x−ω0t)

∫
ψ̃(Ω)e

i
[(

q′Ω+ q′′
2 Ω2

)
x−Ωt

]
dΩ. (29)

We absorb the prefactor in the “amplitude” A(x, t) = e−i(q0x−ω0t)ψ(x, t). The derivatives of the amplitude read

∂xA(x, t) =

∫
i

(
q′Ω+

q′′

2
Ω2

)
ψ̃(Ω)e

i
[(

q′Ω+ q′′
2 Ω2

)
x−Ωt

]
dΩ, (30)

∂tA(x, t) = −
∫

iΩψ̃(Ω)e
i
[(

q′Ω+ q′′
2 Ω2

)
x−Ωt

]
dΩ, (31)

∂ttA(x, t) = −
∫

Ω2ψ̃(Ω)e
i
[(

q′Ω+ q′′
2 Ω2

)
x−Ωt

]
dΩ. (32)

Combining these equations, we find that

∂xA(x, t) + q′∂tA(x, t) +
iq′′

2
∂ttA(x, t) = 0. (33)

vg = 1/q′ is the group velocity.

9. Defining t′ = t− x/vg and x′ = x, we find that ∂x = ∂x′ − v−1
g ∂t′ and ∂t = ∂t′ . With these variables,

∂x′A(x′, t′) +
iq′′

2
∂t′t′A(x

′, t′) = 0. (34)

This is a diffusion equation, with the variables exchanged with respect to the usual ones, and with an imaginary
diffusion coefficient. We drop the primes in the following.

10. As for the diffusion equation, we use the Fourier transform, which we define as

A(x, t) =

∫
Ã(x, ω)eiωt dω

2π
, (35)

Ã(x, ω) =

∫
A(x, t)e−iωtdt. (36)

The Fourier transform of the wave packet at x = 0 is

Ã(0, ω) =
√
2πt0e

−t20ω
2/2. (37)

Fourier transforming the propagation equation (34), we get

∂xÃ(x, ω)) =
iq′′ω2

2
Ã(x, ω)). (38)

Integrating this ODE, we get

Ã(x, ω) = eiq
′′ω2x/2Ã(0, ω) =

√
2πt0 exp

(
−1

2

[
t20 − iq′′x

]
ω2

)
(39)
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Inverting the Fourier transform and using the given formula, we get

A(x, t) =
1√

1− iq′′x
t20

exp

(
− t2

2[t20 − iq′′x]

)
. (40)

11. The amplitude of the peak is given by the norm of the prefactor, which is now complex:

|A(x, 0)| =
(
1 +

q′′2x2

t40

)−1/4

∼
x→∞

x−1/2. (41)

The width w(x) is given by the norm of the denominator in the exponential:

w(x) =
√
t40 + q′′2x2. (42)

Last, the imaginary term in the denominator in the exponential shows that the packet oscillates.

4


	Blood pressure waves
	Dispersion in optical fibers

