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1 Rayleigh-Bénard instability

1. When the fluid is at rest, the equations become

d.p=—pog [1 —a(0-0)], (1)
V20 = 0. (2)

From the second equation we obtain the temperature profile
0=0, -9z (3)

Integrating the equation for the pressure, we get
z _ _ 22
p(2) :po—ﬁg/ [1—04(@¢—19z’_9)]dz’:p0—,5g (z [1—04(@¢—9)] +2on9>. (4)
0

2. The buoyancy term should drive the instability; its intensity is given by ag and it is larger if the thermal gradient
¥ is larger. On the contrary, the “diffusive” terms v and x can penalize the instability.

3. Linearizing around the rest state, we find

V-v=0, (5)
6{0 — I/VQ'U = —ﬁ_1Vp1 + 04991éza (6)
8t91 - nV291 = ’UZ7.9. (7)

The boundary conditions are usually a no slip boundary condition at the walls. The temperature is imposed at the
walls, hence the perturbation should vanish, hence

v(z=0)=v(z=d) =0, (8)
01(z=0)=6,(z =d) =0. (9)
4. The equations now read

iqu, + 0,v, =0, (10)
(0 +v§*)v. = —p tigp1, (11)
(0 +v§*)v. = —p '0.p1 + agby, (12)
(0 + kG0 = v.9. (13)

And the boundary conditions are
0,0,(0) = 0,0, (d) =0, (14)
0.(0) = v,(d) = 0, (15)
01(0) = 61(d) = 0. (16)



5. Combining Egs. (10, 11) leads to
(0 +v§*)0.v. = —p ' ¢*pr1. (17)

Using this relation to eliminate p; in Eq. (12) leads to
(o + V(jz)vz = q_z(o + 1/(}2)822@2 + agby, (18)
which, multiplying by ¢ and using §2, leads to
(0 +v§*)v. = agg’h, (19)
Finally, using this relation in Eq. (16), we find
¢*(0 +v§*)(0 + £G*)01 = agdg*ds. (20)

6. Taking v,,0; x sin(nz/d) allows to satisfy the boundary conditions (15, 16). Incompressibility then gives
v, x cos(mz/d), which satisfies the boundary condition (14).

7. Now, the differential operator is ¢* = ¢ + (7/d)?, so that the dispersion relation can be identified in Eq. (20):

G* (0’ + l/(jQ) (O’ + mf) = agiq®. (21)
Expanding this relation to write it as a polynomial equation for o gives
9 2
0?4 (v + K)§%o + veg* — agﬂq =0. (22)
q
It has a real positive solution for
4 agig?
T 2 <0, (23)
hence for
2 + 2 3
agd @8 (q (TQ)
— > = (24)

VK q q

We can introduce the Rayleigh number Ra and the normalized wavevector ¢ = dg,
. 3
_ agid*  G° (q2 + 7r2)

> == 25
VK q? q? (25)

Ra

The r.h.s. is minimal for ¢ = §* = 7/+/2, and its value is

2 4
Ra, = ZT ~ 658. (26)

8. The flow field describes convection rolls.

9. For d = 10cm, we find AO, ~ T0K.

2 Stability analysis of the Schnackenberg model

1. The equation for the concentrations X and Y are
WX = k1A —koX + k3 X?Y + Dx 0y X, (27)
0,Y = k4B — ks X%Y + Dy 9,,Y. (28)
2. Rescaling the variables as t = 7t, x = £Z, X = cxu, Y = cyv, where 7, ¢, cx and cy are parameters, and

choosing the parameters

T=hy", (29)
0= /Dx/k, (30)
cx = cy = Vka/ks, (31)



we find the proposed system of equations with

a=kiVksA/k?, (32)
b= ky/ksB/k?, (33)
d= Dy /Dx. (34)

3. The homogeneous steady state is given by a — u + u?v = 0, b — u?v = 0, leading to u = a + b, v = b/(a + b)?.
Denoting this state as (ug,vg) and linearizing around it for the perturbation (u,v;) leads to

ur _ (2ugvg —1—¢? u3 Uy
O <v1> o < —2ugv0 —ud — dq? v ] (35)

We have written this equation in Fourier space with the wavevector q. The square matrix is of the form

(911 — Dyq? g12 ) . (36)

921 ga2 — Dag?

The inhibitor is the element with a negative diagonal coefficient, which is B here.
The equation for the growth rate o, which is an eigenvalue of this matrix, is

0= (0~ g1+ D1¢?) (0 — go2 + D2¢%) — gr12921 (37)
=0” - (911 + 922 — (D1 + D2)q2] o+ (911 — D1q2) (922 — D2q2) — g12921 (38)
=02 - So+ P, (39)

where S and P are the sum and product of the eigenvalues.
For the system to develop a Turing I-s instability, the mode ¢ = 0 should be stable, leading to Sy < 0 and
Py > 0:

b—a—(a+b)?
0>5) = = 40
> 50 = 911 + 922 ot ) (40)
0< Py = gi1922 — g12921 = (a +b)%. (41)
The product is
P = Py — (g11D2 + g22D1)q* + D1 Dag™. (42)

For this expression to turn negative for positive wavevectors, a necessary condition is g11 D2 + g22D1 > 0, leading
tod> (a+b)3/(b—a).
Finally, the three conditions reduce to
(a+b)°
b—a

1< <d. (43)

4. Considering the equation P = 0 as an equation for ¢, its discriminant is
A = (g11D2 + g22D1)? — APy D1 Ds. (44)
Considering the necessary condition g11Ds + goo D1 > 0, the condition A > 0 amounts to
911 D2 + goa D1 > 27/ Py D1 Ds. (45)
Replacing g;; with its values, D; = 1 and Dy = d, we obtain an equation for d:

2 3
b—a b—a

d>d+:w<1+ 2b> : (47)

which is satisfied if

a+b
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