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1 Rayleigh-Bénard instability

1. When the fluid is at rest, the equations become

∂zp = −ρ0g
[
1− α

(
θ − θ̄

)]
, (1)

∇2θ = 0. (2)

From the second equation we obtain the temperature profile

θ = Θ↓ − ϑz. (3)

Integrating the equation for the pressure, we get

p(z) = p0 − ρ̄g

∫ z

0

[
1− α

(
Θ↓ − ϑz′ − θ̄

)]
dz′ = p0 − ρ̄g

(
z
[
1− α

(
Θ↓ − θ̄

)]
+

z2

2
αϑ

)
. (4)

2. The buoyancy term should drive the instability; its intensity is given by αg and it is larger if the thermal gradient
ϑ is larger. On the contrary, the “diffusive” terms ν and κ can penalize the instability.

3. Linearizing around the rest state, we find

∇ · v = 0, (5)

∂tv − ν∇2v = −ρ̄−1∇p1 + αgθ1êz, (6)

∂tθ1 − κ∇2θ1 = vzϑ. (7)

The boundary conditions are usually a no slip boundary condition at the walls. The temperature is imposed at the
walls, hence the perturbation should vanish, hence

v(z = 0) = v(z = d) = 0, (8)
θ1(z = 0) = θ1(z = d) = 0. (9)

4. The equations now read

iqvx + ∂zvz = 0, (10)

(σ + νq̂2)vx = −ρ̄−1iqp1, (11)

(σ + νq̂2)vz = −ρ̄−1∂zp1 + αgθ1, (12)

(σ + κq̂2)θ1 = vzϑ. (13)

And the boundary conditions are

∂zvx(0) = ∂zvx(d) = 0, (14)
vz(0) = vz(d) = 0, (15)
θ1(0) = θ1(d) = 0. (16)
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5. Combining Eqs. (10, 11) leads to
(σ + νq̂2)∂zvz = −ρ̄−1q2p1. (17)

Using this relation to eliminate p1 in Eq. (12) leads to

(σ + νq̂2)vz = q−2(σ + νq̂2)∂zzvz + αgθ1, (18)

which, multiplying by q2 and using q̂2, leads to

q̂2(σ + νq̂2)vz = αgq2θ1, (19)

Finally, using this relation in Eq. (16), we find

q̂2(σ + νq̂2)(σ + κq̂2)θ1 = αgϑq2θ1. (20)

6. Taking vz, θ1 ∝ sin(πz/d) allows to satisfy the boundary conditions (15, 16). Incompressibility then gives
vx ∝ cos(πz/d), which satisfies the boundary condition (14).

7. Now, the differential operator is q̂2 = q2 + (π/d)2, so that the dispersion relation can be identified in Eq. (20):

q̂2
(
σ + νq̂2

) (
σ + κq̂2

)
= αgϑq2. (21)

Expanding this relation to write it as a polynomial equation for σ gives

σ2 + (ν + κ)q̂2σ + νκq̂4 − αgϑq2

q̂2
= 0. (22)

It has a real positive solution for

νκq̂4 − αgϑq2

q̂2
< 0, (23)

hence for

αgϑ

νκ
>

q̂6

q2
=

(
q2 + π2

d2

)3
q2

. (24)

We can introduce the Rayleigh number Ra and the normalized wavevector q̄ = dq,

Ra =
αgϑd4

νκ
>

q̂6

q2
=

(
q̄2 + π2

)3
q̄2

. (25)

The r.h.s. is minimal for q̄ = q̄∗ = π/
√
2, and its value is

Rac =
27π4

4
≃ 658. (26)

8. The flow field describes convection rolls.

9. For d = 10 cm, we find ∆Θc ≃ 70K.

2 Stability analysis of the Schnackenberg model

1. The equation for the concentrations X and Y are

∂tX = k1A− k2X + k3X
2Y +DX∂xxX, (27)

∂tY = k4B − k3X
2Y +DY ∂xxY. (28)

2. Rescaling the variables as t = τ t̄, x = ℓx̄, X = cXu, Y = cY v, where τ , ℓ, cX and cY are parameters, and
choosing the parameters

τ = k−1
2 , (29)

ℓ =
√
DX/k2, (30)

cX = cY =
√
k2/k3, (31)
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we find the proposed system of equations with

a = k1
√

k3A/k
3/2
2 , (32)

b = k4
√
k3B/k

3/2
2 , (33)

d = DY /DX . (34)

3. The homogeneous steady state is given by a − u + u2v = 0, b − u2v = 0, leading to u = a + b, v = b/(a + b)2.
Denoting this state as (u0, v0) and linearizing around it for the perturbation (u1, v1) leads to

∂t

(
u1

v1

)
=

(
2u0v0 − 1− q2 u2

0

−2u0v0 −u2
0 − dq2

)(
u1

v1

)
. (35)

We have written this equation in Fourier space with the wavevector q. The square matrix is of the form(
g11 −D1q

2 g12
g21 g22 −D2q

2

)
. (36)

The inhibitor is the element with a negative diagonal coefficient, which is B here.
The equation for the growth rate σ, which is an eigenvalue of this matrix, is

0 =
(
σ − g11 +D1q

2
) (

σ − g22 +D2q
2
)
− g12g21 (37)

= σ2 −
[
g11 + g22 − (D1 +D2)q

2
]
σ +

(
g11 −D1q

2
) (

g22 −D2q
2
)
− g12g21 (38)

= σ2 − Sσ + P, (39)

where S and P are the sum and product of the eigenvalues.
For the system to develop a Turing I-s instability, the mode q = 0 should be stable, leading to S0 < 0 and

P0 > 0:

0 > S0 = g11 + g22 =
b− a− (a+ b)3

a+ b
, (40)

0 < P0 = g11g22 − g12g21 = (a+ b)2. (41)

The product is
P = P0 − (g11D2 + g22D1)q

2 +D1D2q
4. (42)

For this expression to turn negative for positive wavevectors, a necessary condition is g11D2 + g22D1 > 0, leading
to d > (a+ b)3/(b− a).

Finally, the three conditions reduce to

1 <
(a+ b)3

b− a
< d. (43)

4. Considering the equation P = 0 as an equation for q, its discriminant is

∆ = (g11D2 + g22D1)
2 − 4P0D1D2. (44)

Considering the necessary condition g11D2 + g22D1 > 0, the condition ∆ > 0 amounts to

g11D2 + g22D1 > 2
√

P0D1D2. (45)

Replacing gij with its values, D1 = 1 and D2 = d, we obtain an equation for d:

d− 2(a+ b)2

b− a

√
d− (a+ b)3

b− a
> 0, (46)

which is satisfied if

d > d+ =
(a+ b)4

(b− a)2

(
1 +

√
2b

a+ b

)2

. (47)
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