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1. We first expand the energy at the lowest order in h ( ∼ h2):

e(h, h′, h′′) =
1

2

(
h′′2 − Ph′2 + h2

)
. (1)

In the infinite size limit, the energy can be written for the Fourier transform of the height, h̃(k) (up to an unimportant
factor):

E[h] =

∫
(k4 − Pk2 + 1)|h̃(k)|2dk. (2)

We see that the energy becomes negative for P ≥ Pc = 2, for wavevectors around kc = 1.

2. We start by expanding e to the fourth order in h, using P = 2− ϵ and discarding the non-dominant terms such
as ϵh4:

e(h, h′, h′′) =
1

2

(
h′′2 − 2h′2 + h2

)
+

ϵ

2
h′2 +

1

2
h′2h′′2 − 1

4
h′4 − 1

4
h2h′2. (3)

With the proposed form, h(s) = ϵαH(ϵβs) cos(s), the derivatives are

h′(s) = ϵα
[
−H(ϵβs) sin(s) + ϵβH ′(ϵβs) cos(s)

]
, (4)

h′′(s) = ϵα
[
−H(ϵβs) cos(s)− 2ϵβH ′(ϵβs) sin(s) + ϵ2βH ′′(ϵβs) cos(s)

]
. (5)

To simplify, we average over the fast oscillations:

⟨h2⟩ = ϵ2α

2
H(S)2, (6)

⟨h′2⟩ = ϵ2α

2

[
H(S)2 + ϵ2βH ′(S)2

]
, (7)

⟨h′′2⟩ = ϵ2α

2

[
H(S)2 + ϵ2β

[
4H ′(S)2 − 2H(S)H ′′(S)

]
+ ϵ4βH ′′(S)2

]
. (8)

For the terms of order h4, keeping only the dominant terms, we have

⟨h2h′2⟩ = 1

8
ϵ4αH4, (9)

⟨h′4⟩ = 3

8
ϵ4αH4, (10)

⟨h′2h′′2⟩ = 1

8
ϵ4αH4. (11)

In Eq. (3), we find that the dominant terms, of order ϵ2α, cancel, and that the next order terms are

⟨e⟩ = ϵ2α+2β

2
(H ′2 −HH ′′) +

ϵ1+2α

4
H2 − 1

16
ϵ4αH4. (12)

As shown by the following analysis, all the terms are needed, which imposes

α = β =
1

2
. (13)
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At order ϵ2, the normalized energy is

ē(H,H ′, H ′′) = ϵ−2⟨e⟩ = 1

4
H2 − 1

16
H4 +

1

2
(H ′2 −HH ′′). (14)

It can be written as
ē = 2

[
1

2
H ′2 − V (H)

]
− 1

2
(HH ′)′, (15)

with V (H) = − 1
8H

2 + 1
32H

4. The total derivative just contributes a boundary term and we discard it; this can be
justified later. We end up with the energy

E[H(S)] = A

∫
L(H(S),H ′(S))dS. (16)

where we have defined the Lagrangian

L(H,H ′) =
1

2
H ′2 − V (H). (17)

3. The Lagrangian (17) is the Lagrangian of classical mechanics for a potential V (H). The potential as a local
maximum at H = 0, with V (0) = 0, minima at H = ±

√
2, and we note that V (±2) = 0.

Looking for localized buckling, the trajectory should start at H = 0 for S → −∞, travel to H = ±2 and come
back to H = 0 for S → ∞. This corresponds to an energy E = 1

2H
′2 + V (H) = 0, and thus to the equation

H ′ = ±
√
−2V (H) = ±

√
H2

4
− H4

16
. (18)

Looking for a solution of the form H(S) = a/ cosh(bS), we find that we should have a = 2 and b = 1/2. As a
consequence, the form of the deformation is

h(s) =
2ϵ1/2

cosh(ϵ1/2s/2)
cos(s). (19)

We see that as the buckling pattern grows, it becomes more and more localized.
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