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1 Hydrodynamic flow around a swimmer

1. In Fourier space, the Stokes equation and the incompressibility condition read

−ηk2ũµ(k) = ikµP̃ (k)− Fµ, (1)
kµũµ(k) = 0. (2)

Multiplying the first equation by kµ and using the incompressibility leads to

P̃ (k) = −ikµFµ/k
2. (3)

The first equation can be used to obtain the flow:

ũµ(k) =
1

ηk2

(
Fµ − kµkν

k2
Fν

)
= Õµν(k)Fν . (4)

Taking the inverse Fourier transform leads to the result

uµ(x) = Oµν(x)Fν . (5)

2. The gravitational force on a cell is

Fg = v∆ρg =
4

3
π(5× 10−6)3 × (0.05× 103)× 10 ≃ 2.6× 10−13 N. (6)

Its sedimentation velocity is

vs =
Fg

6πηa
=

2.6× 10−13

6π × 10−3 × (5× 10−6)
≃ 3 µm/s. (7)

We find that vs ≪ v0.

3. The flow field due to sedimentation scales as

us(r) ∼ O(r)Fg ∼ 1

ηr
× ηavs ∼

a

r
vs. (8)

The force dipole is characterized by its amplitude Fa = ηav0 × a = ηa2v0, which creates a flow

ud(r) ∼
1

ηr2
ηa2v0 ∼ a2

r2
v0; (9)

we have used that the flow created by a dipole should scale as r−2. The two flows have the same amplitude at a distance r∗

such that
r∗

a
∼ v0

vs
≃ 30. (10)

The flow created by the dipole dominates for r < r∗, the flow due to the sedimentation dominates for r > r∗.

4. We denote n the orientation of the force dipole. To avoid a continuous rotation of the swimmer, the forces should be
aligned with n. If the point forces are separated by a distance a, there is a force Fn exerted on the fluid at an/2, and a force
−Fn exerted at −an/2. The flow is thus

uµ(x) =
[
Oµν

(
x− a

2
n
)
−Oµν

(
x+

a

2
n
)]

Fnν ≃ −Fanνnλ∂λOµν(x). (11)
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We compute the derivative:

∂λOµν(x) =
1

8πη

[
−xλ

r3

(
δµν +

xµxν

r2

)
+

1

r

(
δµλxν + δνλxµ

r2
− 2

xµxνxλ

r4

)]
(12)

=
1

8πηr3

(
δµλxν + δνλxµ − δµνxλ − 3

xµxνxλ

r2

)
. (13)

Contracting with nνnλ leads to

uµ(x) = − Faxµ

8πηr3

(
1− 3

(x · n)2

r2

)
=

3Faxµ

8πηr3

(
cos(θ)2 − 1

3

)
, (14)

where θ is the angle between n and x.
For F > 0 (propelling organ at the rear, pusher, E. coli), the flow is oriented away from the swimmer at the front and at

the rear, and towards the swimmer on the sides. For F < 0 (propelling organ at the front, puller, Chlamydomona), it is the
opposite.

The measured flow around an E coli seems close to the flow created by a dipole. The flow around a Chlamydomona is
more complex, which is due to the two flagella; in this case a better model could be three point forces.

2 Active stress generated by the swimmers

5. We can just write

∇P −∇ · σa = ∇P −∇ ·
(
σa − 1

3
Tr(σa)1+

1

3
Tr(σa)1

)
= ∇

(
P − 1

3
Tr(σa)

)
−∇ ·

(
σa − 1

3
Tr(σa)1

)
. (15)

6. The density of forces f(x) is

fµ(x) = Fnµ

[
δ
(
x− a

2
n
)
− δ

(
x+

a

2
n
)]

= −Fanµnν∂νδ(x) = ∂νσ
a
µν(x). (16)

We identify
σa
µν(x) = −Fanµnνδ(x). (17)

The traceless part is

σ̃a
µν(x) = −Fa

(
nµnν − 1

3
δµν

)
δ(x) = −Faqµνδ(x). (18)

7. With a density of swimmers, the stress tensor is

σa(x) = −Faρ(x)Qµν(x). (19)

3 Effect on a shear flow

8. The order parameter aligns with the shear rate and relaxes with a rate 1/τ (which is the rotational diffusion coefficient).
In the stationary regime,

Qµν = λτ ϵ̇µν . (20)

9. The active stress is
σa = −FaρQ = −Faρλτ ϵ̇. (21)

The total stress is thus
σv + σa = (2η − Faρλτ) ϵ̇ = 2ηeff ϵ̇, (22)

leading to

ηeff = η − 1

2
Faρλτ. (23)

Pushers (F > 0) reduce the viscosity and pullers (F < 0) increase it. There can be a spontaneous flow if the effective viscosity
becomes negative.

10. Pushers aligned with the flow seem to enhance the flow by their activity, while pullers reduce it.
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