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We consider IV particles in a box of volume V'; we denote x; and p; the position and momentum of the particle
i. The particles interact through the isotropic pair potential v(z), which can result from any elementary interaction

(contact, electrostatic, Van der Waals, etc.).

1 Stress tensor as the current of momentum

1. We define the density p(x) and density of momentum 7r(x) in this system by

x) = Zé(m —x;),
x) = Zpié(:c —x;).

We can write conservation equations. The one for p reads

Op(, 1) Zwl -Vi(x —xi(t)) = f%V -7 (x, t),

where we have used that &; = p;/m.

2. The time derivative of 7 involves the stress tensor:
Oy (x,t) =V - o(x,t).

We will make this more explicit to determine the stress tensor.
The particles follow Newton’s law:
0

J#i
where f;; is the force exerted by the particle ¢ on the particle j. The force is given by
fii = =50 (%),

where Tj; = L; — Iy and .’f}ji = wji/\mji|.

We now write the evolution of the density of momentum, using greek indices for the coordinates:

Oy, t) = Z p”;f“’@ o(x Z Ty §(x —x;)v (x)

; |2

The first part can be written as
DPiuPiv i DPipDliv . id
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where we have introduced the ideal gas stress

ULdu(w) = Z [—Mé(:ﬂ - wl)} .



3. The second part can be written as a sum over pairs:

Z ijwdac—mt (xi) Z Tiju V(@) [6(x — x;) — 0(x — x5)] . (10)
p ;i |ww|

We want to write this as a divergence; we note that (App. A)

dx—x;) —0(x —x;) =0, {mijy/o S —x; — Alx; —ax;])dA| . (11)

To keep simpler expressions in the following we denote

Oz z;)(T) = /0 0(x — x; — A — ;])dA (12)

Now the pair contribution to the stress tensor becomes

3 waamm V(@i | =0 |30 T (4,181, 0 (@) | = B,085 (@), (13)

i i |l i =l

where we identify the pair contribution to the stress tensor:

air l‘l Lxl 174
obi (@) = f‘ijf (245) 61, 2] () (14)
(i)

This is the Irving-Kirkwood formula [1].

2 Ideal gas contribution

4. To get better insight in the ideal gas contribution, we can average it over the momentum, using the Maxwell
distribution (see App. B),
<piupi1/> = ka(Sp,Vv (15)

then '
(o (@), = ~kT,p(a). (16)

which is the perfect gas law.

3 Pair contribution and response to deformation

5. The energy due to the pair interaction is

Upair = Z v(wij). (17)
(4,4)

Now assume that we deform the system by applying a small displacement field w(x). The strain field is
1
€uv = 5(8,uuu + avuu)- (18)
The new positions are x, = x; + u(x;). The distance between the particles ¢ and j are now
2
ng = w?j + 225 up(x)) — uplw:)]. (19)

We can write the difference of the displacements as

1
() = @) = iz [ Do+ My — N (20)



hence
2

1 1
2 LijuLijv
m;j ~ :c?j + 2xijuxijy/0 Opuy(x; + Ax; — ;])dA =~ <|m”| + 7& ‘|J /0 € (i + Nzj — :c,-])d)\>
ij

Finally,
1
@) | — |ai;| = Z9nTEv [ 4 Ny — 2i])dA
ij ij| = E v Ti j i .
We note that

1
/ € (i + Nz —x;])dA = /dzr:ew(m)c?[wi)mj](w).
0

The change in energy for this pair is
vlaty) = o(@y) = (o] = oy ) o' (@iy) = T () [ e+ Alw, = )N
ijp 0

= / d(EE#V(a:)MU/(mij)é[mmmj] ().

e
Summing over the pairs,
Upsir = Ve = [ (@0l (@),

as we expect.

4 Average of the stress and pair correlation

6. Using that [0}, m].](x)da: =1, we easily write the volume average of the (pair) stress

—p'nr_ palr xl]ﬂxljl/ / nguwz]l/ / )
o V i) 2V Tij)-

(m’) |i;] |i;]

The two-particle density is defined by
= Z(S(CL’ — wi)é(a:’ — 1137)
i#]j
We can use it to write the pair contribution to the stress:

1 , —x,)(x, —x,
‘753” = W/df’?dw/m(fﬂaw/)( : |$I/L)_( z| )U/(fcl - ).

We change variable to y = ' — x:

~ 1 Y
Op = W/dwdypz(l’,fc+y)y/y v'(y).

If the system is homogeneous po(x, x + y) = p?g(y), leading to

Upa‘lr_i/ yg yuyu /(y)

This relates the average stress and the structure of the system.
The quadratic dependence on p comes from the fact that the stress originates from pair interactions.
If the system is isotropic, we can perform the angular average, using the integral over the unit sphere

/ uyuydu = @5/“/_
s d

For d = 3, we get 4?”5#,,. The average stress is thus

—pair __ Sdflﬁ26 ood d /
o = =g O Yy g(y)v'(y).
0

(32)

(33)

It is diagonal, this is a pure pressure. This implies that the non-diagonal elements of the stress are related to an

anisotropic structure.



A Difference of two Dirac as a divergence

Using a test function ¢(x), we can easily show that

0(x —x1) — 6(x — x2) :V-/O A(s)d(x — v(s))ds, (34)

where 4 is a contour with v(0) = x1, v(1) = x».
Indeed, with such contour we have

[ 8@~ 21) - 8@~ @) s(@)de = d(a1) - (az) (35)
— —[Blr(s)l (36)
= [ Liotatonias (37)
=~ [+ votonas (38)
Now we write
Vo(1() = [ 3@~ v(s)Va(a)dz =~ [ o(@)V3(@ ~¥(s))de. (39)
Hence .
[ @) =@ —w)] s(e)de = [ deot@) [ ¥(5)- Vi@~ y(s)as. (40)
So that, as distributions,
1 1
Sa— 1)~ w—w2) = [ 7(5): Vi@ —y(:)ds =V [ ¥(s)d(a - A()ds (41)

We can then specify it to vy(s) = &1 + s(z2 — x1), leading to

do—a) ~dla o) = V- (@2 -2 [ b w1 — sl oi)ds|. (42)

B Correlations of a Gaussian random variable

Here we consider a Gaussian random variable x € R™ with probability density

1
p(x) = Cexp <2A/wxuxl,> , (43)

where A, is a symmetric positive matrix, and C is the constant that ensures that the probability density is
normalized, [ p(x)de = 1. We show that its correlations are given by

(zpwn) = ALy (44)
To show this, we compute the derivatives
1 1
Oy €XP fiAle,,xu = —AaT ) exp ng,W:r“:ry , (45)
1 1
0005 exp —§AWJL‘M£V = (AarTrApoTo — Aap) €Xp —§Au,,xumu . (46)

The integral over & of these total derivatives is zero. Multiplying Eq. (46) by C and integrating over x, we get for
the right hand side

AaAA[ja <x>\xc,> = Aaﬁ. (47)
In matrix notation this means that A(xxT)A = A, hence
(xx) = A7, (48)
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