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We consider N particles in a box of volume V ; we denote xi and pi the position and momentum of the particle
i. The particles interact through the isotropic pair potential v(x), which can result from any elementary interaction
(contact, electrostatic, Van der Waals, etc.).

1 Stress tensor as the current of momentum

1. We define the density ρ(x) and density of momentum π(x) in this system by

ρ(x) =
∑
i

δ(x− xi), (1)

π(x) =
∑
i

piδ(x− xi). (2)

We can write conservation equations. The one for ρ reads

∂tρ(x, t) = −
∑
i

ẋi(t) · ∇δ(x− xi(t)) = − 1

m
∇ · π(x, t), (3)

where we have used that ẋi = pi/m.

2. The time derivative of π involves the stress tensor:

∂tπ(x, t) = ∇ · σ(x, t). (4)

We will make this more explicit to determine the stress tensor.
The particles follow Newton’s law:

ṗi(t) =
∑
j ̸=i

fji(t), (5)

where fji is the force exerted by the particle i on the particle j. The force is given by

fji = −x̂jiv
′(xji), (6)

where xji = xi − xj and x̂ji = xji/|xji|.
We now write the evolution of the density of momentum, using greek indices for the coordinates:

∂tπµ(x, t) =
∑
i

−piµpiν
m

∂νδ(x− xi)−
∑
j ̸=i

xjiµ

|xji|
δ(x− xi)v

′(xji)

 . (7)

The first part can be written as∑
i

[
−piµpiν

m
∂νδ(x− xi)

]
= ∂ν

∑
i

[
−piµpiν

m
δ(x− xi)

]
= ∂νσ

id
µν(x), (8)

where we have introduced the ideal gas stress

σid
µν(x) =

∑
i

[
−piµpiν

m
δ(x− xi)

]
. (9)
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3. The second part can be written as a sum over pairs:

∑
i

−∑
j ̸=i

xjiµ

|xji|
δ(x− xi)v

′(xji)

 =
∑
⟨i,j⟩

xijµ

|xij |
v′(xij) [δ(x− xi)− δ(x− xj)] . (10)

We want to write this as a divergence; we note that (App. A)

δ(x− xi)− δ(x− xj) = ∂ν

[
xijν

∫ 1

0

δ(x− xi − λ[xj − xi])dλ

]
. (11)

To keep simpler expressions in the following we denote

δ[xi,xj ](x) =

∫ 1

0

δ(x− xi − λ[xj − xi])dλ (12)

Now the pair contribution to the stress tensor becomes

∑
i

−∑
j ̸=i

xjiµ

|xji|
δ(x− xi)v

′(xji)

 = ∂ν

∑
⟨i,j⟩

xijµxijν

|xij |
v′(xij)δ[xi,xj ](x)

 = ∂νσ
pair
µν (x), (13)

where we identify the pair contribution to the stress tensor:

σpair
µν (x) =

∑
⟨i,j⟩

xijµxijν

|xij |
v′(xij)δ[xi,xj ](x). (14)

This is the Irving-Kirkwood formula [1].

2 Ideal gas contribution

4. To get better insight in the ideal gas contribution, we can average it over the momentum, using the Maxwell
distribution (see App. B),

⟨piµpiν⟩ = mkTδµν , (15)

then 〈
σid
µν(x)

〉
p
= −kTδµνρ(x), (16)

which is the perfect gas law.

3 Pair contribution and response to deformation

5. The energy due to the pair interaction is

Upair =
∑
⟨i,j⟩

v(xij). (17)

Now assume that we deform the system by applying a small displacement field u(x). The strain field is

ϵµν =
1

2
(∂µuν + ∂νuµ). (18)

The new positions are x′
i = xi + u(xi). The distance between the particles i and j are now

x′
ij

2 ≃ x2
ij + 2xijµ[uµ(xj)− uµ(xi)]. (19)

We can write the difference of the displacements as

uµ(xj)− uµ(xi) = xijν

∫ 1

0

∂νuµ(xi + λ[xj − xi])dλ, (20)
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hence

x′
ij

2 ≃ x2
ij + 2xijµxijν

∫ 1

0

∂νuµ(xi + λ[xj − xi])dλ ≃
(
|xij |+

xijµxijν

|xij |

∫ 1

0

ϵµν(xi + λ[xj − xi])dλ

)2

. (21)

Finally,

|x′
ij | − |xij | ≃

xijµxijν

|xijµ|

∫ 1

0

ϵµν(xi + λ[xj − xi])dλ. (22)

We note that ∫ 1

0

ϵµν(xi + λ[xj − xi])dλ =

∫
dxϵµν(x)δ[xi,xj ](x). (23)

The change in energy for this pair is

v(x′
ij)− v(xij) ≃

(
|x′

ij | − |xij |
)
v′(xij) ≃

xijµxijν

|xijµ|
v′(xij)

∫ 1

0

ϵµν(xi + λ[xj − xi])dλ (24)

=

∫
dxϵµν(x)

xijµxijν

|xijµ|
v′(xij)δ[xi,xj ](x). (25)

Summing over the pairs,

U ′
pair − Upair =

∫
ϵµν(x)σ

pair
µν (x)dx, (26)

as we expect.

4 Average of the stress and pair correlation

6. Using that
∫
δ[xi,xj ](x)dx = 1, we easily write the volume average of the (pair) stress

σ̄pair
µν =

1

V

∫
σpair
µν (x) =

1

V

∑
⟨i,j⟩

xijµxijν

|xij |
v′(xij) =

1

2V

∑
i ̸=j

xijµxijν

|xij |
v′(xij). (27)

The two-particle density is defined by

ρ2(x,x
′) =

∑
i ̸=j

δ(x− xi)δ(x
′ − xj). (28)

We can use it to write the pair contribution to the stress:

σ̄pair
µν =

1

2V

∫
dxdx′ρ2(x,x

′)
(x′

µ − xµ)(x
′
ν − xν)

|x′ − x|
v′(x′ − x). (29)

We change variable to y = x′ − x:

σ̄pair
µν =

1

2V

∫
dxdyρ2(x,x+ y)

yµyν
|y|

v′(y). (30)

If the system is homogeneous ρ2(x,x+ y) = ρ̄2g(y), leading to

σ̄pair
µν =

ρ̄2

2

∫
dyg(y)

yµyν
|y|

v′(y). (31)

This relates the average stress and the structure of the system.
The quadratic dependence on ρ̄ comes from the fact that the stress originates from pair interactions.
If the system is isotropic, we can perform the angular average, using the integral over the unit sphere∫

S
uµuνdu =

Sd−1

d
δµν . (32)

For d = 3, we get 4π
3 δµν . The average stress is thus

σ̄pair
µν =

Sd−1ρ̄
2

2d
δµν

∫ ∞

0

dy ydg(y)v′(y). (33)

It is diagonal, this is a pure pressure. This implies that the non-diagonal elements of the stress are related to an
anisotropic structure.
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A Difference of two Dirac as a divergence
Using a test function ϕ(x), we can easily show that

δ(x− x1)− δ(x− x2) = ∇ ·
∫ 1

0

γ̇(s)δ(x− γ(s))ds, (34)

where γ is a contour with γ(0) = x1, γ(1) = x2.
Indeed, with such contour we have∫

[δ(x− x1)− δ(x− x2)]ϕ(x)dx = ϕ(x1)− ϕ(x2) (35)

= −[ϕ(γ(s))]10 (36)

= −
∫ 1

0

d

ds
[ϕ(γ(s))]ds (37)

= −
∫ 1

0

γ′(s) · ∇ϕ(γ(s))ds. (38)

Now we write
∇ϕ(γ(s)) =

∫
δ(x− γ(s))∇ϕ(x)dx = −

∫
ϕ(x)∇δ(x− γ(s))dx. (39)

Hence ∫
[δ(x− x1)− δ(x− x2)]ϕ(x)dx =

∫
dxϕ(x)

∫ 1

0

γ′(s) · ∇δ(x− γ(s))ds. (40)

So that, as distributions,

δ(x− x1)− δ(x− x2) =

∫ 1

0

γ′(s) · ∇δ(x− γ(s))ds = ∇ ·
∫ 1

0

γ′(s)δ(x− γ(s))ds. (41)

We can then specify it to γ(s) = x1 + s(x2 − x1), leading to

δ(x− x1)− δ(x− x2) = ∇ ·
[
(x2 − x1)

∫ 1

0

δ(x− x1 − s[x2 − x1])ds

]
. (42)

B Correlations of a Gaussian random variable
Here we consider a Gaussian random variable x ∈ Rn with probability density

p(x) = C exp

(
−1

2
Aµνxµxν

)
, (43)

where Aµν is a symmetric positive matrix, and C is the constant that ensures that the probability density is
normalized,

∫
p(x)dx = 1. We show that its correlations are given by

⟨xµxν⟩ = A−1
µν . (44)

To show this, we compute the derivatives

∂α exp

(
−1

2
Aµνxµxν

)
= −Aαλxλ exp

(
−1

2
Aµνxµxν

)
, (45)

∂α∂β exp

(
−1

2
Aµνxµxν

)
= (AαλxλAβσxσ −Aαβ) exp

(
−1

2
Aµνxµxν

)
. (46)

The integral over x of these total derivatives is zero. Multiplying Eq. (46) by C and integrating over x, we get for
the right hand side

AαλAβσ⟨xλxσ⟩ = Aαβ . (47)

In matrix notation this means that A⟨xxT⟩A = A, hence

⟨xxT⟩ = A−1. (48)
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