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1 Free energy and interaction force

1. The free energy of the density fields contains the electrostatic energy and an entropic term, with density
Tρi(x) log(ρi(x)) (kB = 1). The total free energy of a configuration is thus

F =
1

2

∑
i,j

qiqj

∫
dxdx′G(x− x′, zi − zj)[ρi(x)− ρ̄i][ρj(x

′)− ρ̄j ] + T
∑
i

∫
dxρi(x) log(ρi(x)). (1)

2. In a given configuration, the force exerted on the plate 2 can be computed by deriving the energy with respect
to L. As only G(x, L) depends on L, this leads to

f = −q1q2

∫
dxdx′[∂LG(x− x′, L)][ρ1(x)− ρ̄1][ρ2(x

′)− ρ̄2]. (2)

3. The average force is thus

⟨f⟩ = −q1q2

∫
dxdx′[∂LG(x− x′, L)] ⟨[ρ1(x)− ρ̄1][ρ2(x

′)− ρ̄2]⟩ = −Aq1q2

∫
dx[∂LG(x, L)]C12(x), (3)

where C12(x) = ⟨[ρ1(x)− ρ̄1][ρ2(0)− ρ̄2]⟩ is proportional to the pair correlation. We have used the translational
invariance:

⟨[ρ1(x)− ρ̄1][ρ2(x
′)− ρ̄2]⟩ = C12(x− x′). (4)

2 Correlations

4. Retaining only the quadratic terms in the free energy, we get the Debye-Hückel free energy:

FDH =
1

2

∑
i,j

qiqj

∫
dxdx′G(x− x′, zi − zj)ni(x)nj(x

′) +
T

2

∑
i

ρ̄−1
i

∫
dxni(x)

2. (5)

Note that the linear terms disappear since by definition∫
dxni(x) = 0. (6)

5. We then move to Fourier space in the direction of the plates, and define

ñi(k) =
1

2π

∫
dke−ik·xni(x), (7)

ni(x) =
1

2π

∫
dkeik·xñi(k). (8)

In Fourier space, the free energy is

FDH =
1

2

∑
i,j

qiqj × 2π

∫
dkG̃(k, zi − zj)ñi(k)

∗ñj(k) +
T

2

∑
i

ρ̄−1
i

∫
dk|ñi(k)|2. (9)
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6. The free energy can be written as

FDH =
1

2

∑
i,j

∫
dk∆ij(k)ñi(k)

∗ñj(k), (10)

where
∆ij(k) = 2πqiqjG̃(k, zi − zj) + T ρ̄−1

i δij . (11)

7. From equipartition, the correlation function is given by

⟨ñi(k)
∗ñj(k)⟩ = 2πC̃ij(k) = T∆−1

ij (k) (12)

Since the inverse of the matrix
(
a b
c d

)
is given by 1

ad−bc

(
d −b
−c a

)
, we have the correlation between the densities

1 and 2:

C̃12(k) = − Tϵ

πq1q2

ke−kL

(1 + 2l1k)(1 + 2l2k)− e−2kL
, (13)

where we have introduced the Debye length in the plate i:

li =
Tϵ

ρ̄iq2i
. (14)

We observe different form for the correlations for lengths shorter than the Debye lengths, kli ≫ 1, and larger than
the Debye lengths, kli ≪ 1.

3 Force

8. Fourier transforming the integral in Eq. (3), we obtain

⟨f⟩ = −Aq1q2

∫
dk∂LG̃(k, L)C̃12(k) (15)

=
Aq1q2
4πϵ

∫
dke−kLC̃12(k). (16)

We have used the expression of G̃(k, z).

9. Using the expression for the correlations (Eq. (13)) and an integral over the orientation of the wavevector, we
get

⟨f⟩ = −AT

2π

∫ ∞

0

dk
k2

(1 + 2l1k)(1 + 2l2k)e2kL − 1
. (17)

The negative sign shows that it is attractive.

10. If the separation between the plates is much larger than the Debye lengths in the plates, lik ≪ 1; neglecting
these terms leads to

⟨f⟩L≫li ≃ −AT

2π

∫ ∞

0

k2dk

e2kL − 1
(18)

= − AT

16πL3

∫ ∞

0

u2du

eu − 1
(19)

= −ATζ(3)

8πL3
. (20)

This limit is universal and does not depend on the properties of the plates, such as the charge and density of the
carriers.

11. The scaling of the universal form could have been guessed. Indeed, a pressure that depends only on T and L
should scale as T/L3. We say that it is a fluctuations induced force because it is “proportional” to the temperature
(note however that the temperature also enters the Debye lengths in the short distance limit).
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The quantum scaling is different because h is an energy times a time, hence the force involves the time dependence
of the electric interaction, which is encoded in the speed of light, c. We then get a pressure with hc/L4; the
proportionality to h highlights the fact that it comes from quantum fluctuations.

12. In the opposite limit when the separation between the plates is much smaller than the Debye lengths, it becomes

⟨f⟩L≪li ≃ − AT

8πl1l2

∫ ∞

0

e−2kLdk = − AT

16πl1l2L
. (21)

This limit is not universal as it depends on the Debye lengths in the plates.
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